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A substantial collection of work in operations management considers settings where a firm faces uncertain

demand that depends on parameters that are ex ante unknown, but can be learned by observing historical

data. This work typically assumes that future demand is unaffected by the firm’s learning process. However,

in the new era of social media, it is increasingly the case that the information used by the firm to gauge

future demand (e.g., sales and stockouts, consumer feedback) is now also observable to the consumers and

may influence their purchase decisions. In this paper, we consider a newsvendor model where a product of ex

ante unknown value is sold in an environment where learning is “two-sided,” in that both the firm and the

consumers learn the product’s value over time by observing the same information. The analysis establishes

a consequential insight: when learning is two-sided, the value of information is often negative for the firm; as

a result, the firm’s optimal stocking quantity is often lower than that under one-sided learning. Moreover,

under certain conditions we identify, we show that the optimal stocking quantity can be even lower than the

critical-fractile policy, in stark contrast to the recurring prescription found in existing literature of “stocking

more” in the presence of learning. Further results and numerical experiments suggest that the loss for the

firm from failing to account for the two-sidedness of the learning process can be significant.
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1. Introduction

Choosing how many units to stock in the presence of demand uncertainty is one of the most

significant challenges faced by firms selling new products. The associated tradeoff is epitomized

by the famous “newsvendor problem”: stock too many units and the firm runs the risk of leftover

inventory that is costly to store and hard to move; stock too few units and the firm risks being

stocked out and leaving money on the table. Although the parameters that govern demand can be

unknown to the firm to begin with, it is often the case that these can be learned over time, for

example, by observing past sales and stockouts or consumer feedback.

Demand uncertainty is in many cases associated with various demand-side characteristics, such

as the total size of the market, the consumers’ tastes and assessment of product quality, the dis-

tribution of consumer preferences, etc. A substantial collection of work in operations management

has focused on developing insights on how firms can adapt their quantity decisions so as to be in a
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better position to learn these characteristics and match supply with demand more effectively in the

future (e.g., Besbes and Muharremoglu 2013, Ding et al. 2002, Lariviere and Porteus 1999, Lu et al.

2005); from this work, a recurring structural result is the prescription to “stock more” than the

quantity derived through the well-known critical-fractile formula. When demand uncertainty stems

from such demand-side characteristics, the associated learning process is referred to in this paper

as “one-sided,” in that the information generated and the learning that occurs is only relevant to

the firm’s actions moving forward, and future demand is exogenous to this learning process.

But demand can also be difficult to predict because of uncertainty associated with the product

itself, in particular when the product is new and innovative. In such cases, the product’s value is a

function of the match between the consumers’ tastes and the product’s underlying characteristics,

and can therefore be difficult to assess ex ante for both the firm and the consumers: while the

firm is uncertain about the consumers’ tastes and assessments, the consumers are uncertain about

the product’s unobservable attributes (e.g., performance, usefulness). A key difference in these

settings is that learning is “two-sided,” in that both the firm and the consumers are simultaneously

learning the product’s value and making decisions accordingly. With the advent of social media

platforms where consumers share their actions and experiences, two-sided learning has received

significant attention in the recent literature, which highlights the new challenges faced by the firm

when internalizing the impact of its actions not only on its own learning process, but also on that

of the consumers (e.g., Crapis et al. 2016, Feldman et al. 2018, Papanastasiou and Savva 2016, Yu

et al. 2015).

Despite this recent attention, there exists no work to date that addresses newsvendor decisions

in environments where learning is two-sided. As a result, it remains unclear whether and to what

extent the insights and prescriptions that apply to one-sided (firm) learning extend to settings

with two-sided (firm-and-consumer) learning. In this paper, we develop a model that allows us

to perform a direct comparison between optimal newsvendor decisions under these two learning

regimes and to investigate their associated implications.

We consider a two-period newsvendor model of a monopolist firm selling a new product of ex

ante unknown value. The consumer population is divided into “innovators,” who enter the market

in the first period, and “followers,” who enter the market in the second period. Innovators are

assumed to be expert consumers, in the sense that they can accurately predict the product’s value

upon inspection and before making their purchase decision. Followers can be either experts or

non-experts, depending on the learning regime being considered. In the case where followers are

experts, the model is one of one-sided learning, because while the firm learns the product’s value

for the consumers (and therefore future demand) from the outcomes of its first-period actions, the

consumers’ decisions in the second period are unaffected by the firm’s learning process. By contrast,
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in the case where followers are non-experts, the model is one of two-sided learning, because both

the firm and the followers learn the product’s value simultaneously from the outcomes of the firm’s

first-period actions. Consistent with the existing literature, we consider learning based on past

sales observations, but we demonstrate that our model insights extend to other forms of learning

as well, such as learning from product reviews.

We solve the firm’s two-period inventory problem via backward induction, and use the distinction

between scenarios of low and high value realizations (which result in excess first-period inventory

and demand, respectively), to separate the impact of the firm’s first-period quantity decision on

second-period profit into two distinct channels. The first is the inventory channel, which refers to

the cost-savings associated with satisfying second-period demand with leftover units from the first

period rather than producing new units. The second is the information channel, which refers to the

informational gains (with respect to learning product value) associated with the events of the first

period. The analysis builds on the structural properties of the two channels in order to develop

intuition on how they each affect the firm’s optimal policy and profits.

We focus first on the implications of one- versus two-sided learning for the firm’s optimal quantity

decision in the first period. When learning is one-sided, both the inventory and the information

channels call for an increase in the firm’s first-period quantity decision. As a result, we retrieve the

prescription commonly encountered in the existing literature that the firm should “stock more”

than the myopic-optimal quantity (i.e., the single-period critical-fractile quantity), because this

enhances the firm’s ability to learn by reducing demand censoring, while at the same time the

second period serves as a form of salvage market for excess first-period inventory.

When learning is two-sided, we show that the effect of the inventory channel is unchanged;

however, the information channel now acts in the opposite direction: if being better-informed means

that the consumers will also be better-informed, the firm prefers to know less; in other words, when

learning is two-sided, the value of information is negative for the firm. To explain this phenomenon,

we highlight the key difference in the informational role of the quantity decision under one- and

two-sided learning: under one-sided learning, the firm’s quantity decision should be viewed as a tool

for information extraction (from the innovators); on the other hand, under two-sided learning, the

quantity decision should be viewed as a tool for information transmission (to the followers). While

information extraction is always accompanied by a “more-is-better” property, the same does not

necessarily apply in the case of information transmission; indeed, we show that in our model the

corresponding property is of a “less-is-better” nature. Building on this observation, we establish

that (i) the optimal quantity under two-sided learning is lower than that under one-sided learning,

and (ii) if the effect of the inventory channel is weak, the optimal quantity under two-sided learning

is also lower than the myopic-optimal quantity; one sufficient condition for the latter is that the
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proportion of innovators in the population is not too high—thus, when learning is two-sided, we

find that the firm should in fact “stock less.”

We then consider the implications of the two alternative learning regimes for the firm’s expected

profit. Here, we identify another interesting phenomenon. Although our preceding results paint the

picture of a firm that “likes” and takes actions to encourage learning when this is one-sided, but

“dislikes” and takes actions to decrease learning when it is two-sided, we nevertheless show that

a firm operating in a two-sided environment is ex ante better off compared to one that operates

under one-sided learning. One interpretation of this result is that the firm, before knowing the

product’s realized value, prefers to face customers that are non-experts, because this allows it to

exercise a form of ex ante control on the consumers’ knowledge, through its choice of the first-

period stocking level. At the same time, our analysis underscores the need for the firm to account

for the correct learning regime when making its quantity decisions; in particular, we show that

adjusting the quantity decision to account for the wrong type of learning regime is typically worse

than ignoring learning altogether (i.e., employing the myopic-optimal policy). Through numerical

experiments, we further demonstrate that policies which do not internalize the two-sidedness of

the learning process can lead to significant profit losses for the firm, reaching up to 36% in our

experiments.

2. Literature Overview

This paper bridges the gap between two existing streams of research in operations management. The

first is the relatively well-developed line of work that incorporates demand learning into newsvendor

decisions. The second is a more recent area of research that investigates the implications of two-

sided learning for firm-level operational decisions. In this section, we provide an overview of each

stream along with some of their main takeaways.

The research that focuses on how learning should be taken into account in newsvendor decisions

has focused to date on what we refer to in this paper as “one-sided” learning. The firm faces

demand that depends on one or more parameters whose values are ex ante unknown but can be

learned over time by observing historical data. Learning in these models is assumed to be one-sided,

in the sense that the firm’s learning process does not affect the parameters that govern future

demand realizations.1 This assumption is reasonable in cases where demand uncertainty stems

from demand-side characteristics which are irrelevant to the purchase decision of any individual

1 Throughout this paper, “one-sided” learning refers to learning of demand by the firm. We do not consider one-sided

learning of product characteristics by the consumers, which typically focuses on the firm’s ability to signal its private

knowledge; for such work, see Stock and Balachander (2005) and references therein.
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consumer (e.g., the total size of the market, or the distribution of the consumers’ willingness-

to-pay), or where the source of demand uncertainty could potentially affect individual purchase

decisions, but consumers do not have access to the data observed by the firm. Earlier work in this

area focused on one-sided learning from past demand observations; for examples of such work, see

Azoury (1985), Lovejoy (1990), and Scarf (1959).

More recent papers consider the more realistic case where learning occurs in the presence of

“demand censoring”: in the event of a stockout, the firm observes only a censored signal of demand.

This is the mode of learning considered in our model as well. Examples of work that incorporate

demand censoring include, among others, Bensoussan and Sethi (2009), Besbes and Muharremoglu

(2013), Ding et al. (2002) (see also Lu et al. 2005), Lariviere and Porteus (1999), Petruzzi and

Dada (2002); see also Chen and Mersereau (2015) and Mersereau (2015) for a more comprehensive

discussion of this work. Demand censoring gives rise to an exploration-exploitation tradeoff, in that

the firm must decide how to balance current against future profits: being in a better position (from

an informational perspective) in the future invariably requires decisions that result in suboptimal

current profits. From this work, a recurring structural result is that the firm should “stock more” in

the presence of learning; that is, the firm should increase production relative to the myopic-optimal

policy (given by the single-period critical-fractile formula). This paper is the first to introduce

two-sided learning in a newsvendor setting and to perform a comparison between the two learning

regimes of one- and two-sided learning. When learning is one-sided, our model is much in the

mould of those mentioned above, and for this case we also retrieve the “stock more” prescription.

By contrast, when learning is two-sided, we show that this prescription is often reversed, while

even when it is not, failing to account for the two-sidedness of learning by appropriately adjusting

quantity decisions can result in significant profit losses.

Two-sided learning is a central feature in the growing stream of research on the implications

of social learning for operational decisions. In contrast to one-sided learning, two-sided learning

refers to environments where both the firm and the consumers are simultaneously learning their

parameters of interest by observing the same information. In such settings, the firm’s exploration-

exploitation problem often becomes more complex, because the firm must now additionally account

for the impact of learning on the consumers’ future actions. In the economics literature, Bergemann

and Välimäki (1997) study the diffusion of a new product in a duopolistic market with two-sided

learning, while Liu and Schiraldi (2012) study a monopolist’s launch sequence as a tool to induce

or prevent herding behavior among potential product adopters. In operations management, Swin-

ney (2011) investigates the value of quick response production practices when the firm and the

consumers simultaneously learn the size of the market and their valuations for the product, respec-

tively. Closer to our paper is the work that focuses on two-sided learning in the context of experience



6 Papanastasiou: Newsvendor Decisions with Two-Sided Learning

goods, where the firm and the consumers simultaneously learn the product’s value/quality (i.e.,

the match between consumer tastes and product characteristics). Crapis et al. (2016), Papanasta-

siou and Savva (2016) and Yu et al. (2015) investigate the implications of two-sided learning for

a monopolist firm’s dynamic pricing policy, and Feldman et al. (2018) focus on its implications

for product design and quality. The aforementioned papers consider various policy implications

of two-sided learning in make-to-order systems; our paper contributes to this area of research by

studying the implications of two-sided learning for inventory decisions in a make-to-stock system.

This work also adds to a long list of papers that build on the classic newsvendor problem

to investigate the performance of various operational strategies. Among such work, Cachon and

Swinney (2009) study the value of price commitment and quick response inventory practices; Su

and Zhang (2009) focus on the value of availability guarantees when facing strategic consumers;

Bimpikis and Markakis (2015) discuss the benefits of inventory pooling under different types of

demand distributions; Hu et al. (2015) propose operations and marketing policies that enable the

firm to leverage social influence. This paper considers how a firm should adjust early production in

the presence of two-sided learning, and can therefore be viewed as an investigation into the efficacy

of mass versus limited release strategies for new experience goods.

Finally, our result on the optimality of stocking less than the critical-fractile quantity implies that

stock outs occur more frequently under two-sided learning. In this respect, our work relates to a

collection of papers that highlight the use of “strategic stockouts” as a way of generating increased

overall demand for the product, in settings other than the newsvendor. DeGraba (1995) and Courty

and Nasiry (2016) demonstrate that a firm may intentionally undersupply the market to induce

buying frenzies when consumers are uncertain about their valuations for the product; Stock and

Balachander (2005) show that stockouts can be an effective signal of quality when an informed firm

faces uninformed consumers; Debo and Van Ryzin (2009) find that an asymmetric allocation of

inventory to ex ante identical retailers can lead to higher overall demand when consumers interpret

stockouts as a signal of high quality; and Papanastasiou et al. (2016) highlight that deliberate

product scarcity can be used to leverage consumer self-selection in order to generate more favorable

product reviews.

3. Model Description

We consider a two-period version of the classic newsvendor problem (see Arrow et al. 1951). There

is a single firm selling a single product over two periods, t∈ {1,2}. In both periods, the price and

per unit production cost of the product are exogenous and denoted by p and c respectively, where

0< c < p.2 The production quantity in period t is denoted by Qt. The product is non-perishable;

2 In Appendix B we demonstrate that endogenous pricing does not affect our model insights.
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leftover units in the first period are carried over to the second period, while leftover units at the

end of the second period have zero salvage value. For simplicity, we assume that excess demand

in either period is lost forever, and that inventory holding costs are negligible; relaxing either of

these assumptions would only strengthen our main insights.

The product’s value is ex ante unknown and denoted by v. Ahead of the selling season, v is viewed

as a random variable with positive support on the closed interval [vl, vh] for some vh > vl ≥ 0; let

f(v) denote the corresponding probability density function (pdf), F (v) the cumulative distribution

function (cdf), and define F̄ (v) := 1−F (v). The uncertainty in the product’s value in our model

represents the uncertainty associated with the match between the product’s characteristics on one

side and the consumers’ tastes on the other. In turn, this can depend on various uncertainties on

either side of the match, including the outcome of the manufacturing process, the performance of

the product’s individual components and overall design, the usefulness of the product’s functions

for the consumers, the consumers’ assessment of how innovative the product is, etc.

Demand for the product is composed of a population of infinitesimally small consumers with

total mass normalized to one. An individual consumer’s willingness to pay for a product of value v

is given by ui = xiv−p, where the consumers’ value sensitivity or “type” xi is a random draw from

a distribution with pdf denoted by g(x), cdf denoted by G(x), and positive support on x∈ [xl, xh]

for some xh > xl ≥ 0. To simplify exposition, we present our results for the special case where

g(x) is the standard uniform pdf, and comment as necessary wherever results are sensitive to this

assumption. Accordingly, to avoid trivial cases we also require that vh > p (i.e., there are at least

some realizations of product value v at which some consumers are willing to purchase the product)

and we set vl = 0 (i.e., there are at least some realizations of product value v at which no consumer

is willing to purchase).

We assume that there are two categories of consumers, “innovators” who arrive in the first period,

and “followers” who arrive in the second period. The proportion of innovators in the population is

γ ∈ (0,1]. Consistent with a large body of work in marketing and the diffusion of innovations (see

Peter et al. (1999) and Rogers (2010)), innovators are assumed to be expert consumers who are able

to assess the product’s value before making their purchase decision.3 Depending on the learning

regime under investigation, followers can be either experts or non-experts; more specifically:

(i) When the followers are experts, learning is “one-sided”: all consumers are informed about the

product’s value and only the firm is learning from the events of the first period.

(ii) When the followers are non-experts, learning is “two-sided”: both the firm and the followers

are simultaneously learning the product’s value from the events of the first period.

3 Our main analysis assumes that expert consumers are perfect in their assessments of product value; in §8.2 we relax

this assumption and demonstrate that the analysis does not change significantly.
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It is important to note that either type of learning regime is motivated by a distinct type of

product. When the product is a “search good,” it is sensible to assume that all consumers are

experts, since by definition there is no significant uncertainty associated with product attributes

that are unobservable before purchase. When the product is an “experience good,” this uncertainty

is significant and only consumers with specialized knowledge (the innovators) are likely to be in

a position to judge the product before purchase. The firm, on the other hand, faces uncertainty

with regards to the consumers’ tastes irrespective of the type of product. To be consistent with

the existing literature on newsvendor decisions with learning, our analysis focuses on learning from

observed sales and stockouts (see §4.2); in §8.1, we consider an alternative mode of learning based

on consumer reviews, and show that our main results are qualitatively unchanged.

Both the firm and the consumers are assumed to be risk-neutral utility maximizers, with outside

options normalized to zero. We first analyze the drivers underlying the firm’s optimal quantity

policy when the firm operates under either of the two learning regimes. We then consider the

associated implications for the firm’s ex ante profit. We conclude the analysis by demonstrating

robustness of our main insights under alternative model specifications.

4. Preliminaries

4.1. Myopic-Optimal Quantity Decisions

The main point of interest in our analysis is the change in the firm’s optimal first-period quantity

decision when the firm internalizes the impact of the resulting (either one- or two-sided) learning

process on its second-period profit. It is therefore useful to first establish a benchmark where the

firm disregards the future in the first period, employing a so-called “myopic-optimal” policy.

When choosing the first-period quantity, the firm is uncertain about the product’s realized value.

In the first period, a mass γ of expert consumers inspect the product and decide whether to

purchase. The firm’s expected profit as a function of the quantity decision Q1 is given by

π1(Q1) = pE [min{D1(v),Q1}]− cQ1,

where the first-period demand at value v is D1(v) = γ
[
1− p

v

]+
and [d]+ := max{0, d}. The optimal

policy is specified by the well-known “critical-fractile formula,” as described in Proposition 1.

Proposition 1. The unique myopic-optimal first-period quantity decision is

Q∗1,m = γ

[
1− p

vm

]+

, where vm = F−1

[
p− c
p

]
. (1)

All proofs are provided in Appendix C. The quantity that maximizes the firm’s expected profit in

the first period is determined by optimizing over the critical value vm, such that if the product’s
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value is higher than vm the firm sells out, while if it is lower than vm the firm has leftover units.

As in the standard newsvendor model, vm is chosen by the firm according to the familiar recipe

which optimally balances overage against underage costs.

To avoid obvious discussions regarding corner solutions, the analysis that follows will assume

that Q∗1,m > 0. Moreover, it will be useful to define Qmax := γ
[
1− p

vh

]
, which is the maximum

possible demand in the first period (i.e., Qmax is the quantity demanded by the experts in the first

period when the product’s realized value is vh).

4.2. Learning From Sales and Stockouts

While the product’s realized value is unobservable, the firm and the consumers can observe the

events of the first period and use this information to update their beliefs. In particular, we assume

that the firm and the consumers can observe (i) the volume of sales, and (ii) whether or not the

product sold out in the first period (in §8.3, we extend the model to the case where the consumers

observe this information only with some probability).4 A potential obstacle in learning the product’s

value is the “demand-censoring” effect, which refers to the inability to observe demand precisely

in the event of a stockout (see Chen and Mersereau 2015). We discuss here the process of learning

based on sales in the context of our model, and highlight how demand censoring affects this process.

Consider first the case where S1 sales occurred in the first period and the product did not

stock out. Since the innovators are by assumption informed about product value, upon observing

a volume S1 > 0 of first-period sales, the product’s value can be inferred by equating first-period

demand with first-period sales, γ
(
1− p

v

)
= S1, to get v = p

1−S1
γ

. By contrast, if S1 sales occurred

and the product stocked out in the first period, the product’s value can only be inferred up to the

inequality γ
(
1− p

v

)
≥ S1, that is, up to the fact that demand was greater than the observed sales.

The updated expectation of product value in the event of a stockout is then E

[
v
∣∣ v≥ p

1−S1
γ

]
.

Now, suppose the firm chooses the first-period stocking quantity Q1 ∈ [0,Qmax].5 If a stockout

occurs in the first period, the updated value expectation will be

v̂(Q1) :=E

[
v
∣∣ v≥ p

1− Q1
γ

]
, (2)

since the observed volume of sales will be S1 =Q1. Using the last expression, we may define

vc(Q1) :=
p

1− Q1
γ

(3)

4 In practice, consumers have access to information on the sales performance of products through several channels,

including popular press articles (e.g., Cnet.com 2018), firms’ performance reports (e.g., Apple Inc. 2017), investment

analyst reports (Bloomberg 2018), direct in-store observations, purchases among members of their immediate social

network, word-of-mouth communications, social media posts (e.g., Facebook likes, comments and shares), etc.

5 Note that it is not necessary in our model for consumers to observe Q1.
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as the critical product value above which (below which) a stockout occurs (does not occur) in the

first period when the firm stocks Q1 units. To summarize the above discussion,

Lemma 1. When the first-period quantity is Q1, learning takes one of two possible forms:

(i) If the realized product value satisfies v < vc(Q1), then a stockout does not occur in the first

period and the product’s value is perfectly revealed.

(ii) If the realized product value satisfies v≥ vc(Q1), then a stockout occurs in the first period and

value is only imperfectly revealed. The updated value expectation is given by v̂(Q1) =E[v | v≥

vc(Q1)].

5. One-Sided Learning

We begin our analysis with the case of one-sided learning. The key feature of this setting is that the

firm learns the product’s value for the consumers over time, and the information generated during

this learning process does not affect future demand for the product. To capture one-sided learning

within our model setup, we assume that consumers in both periods are experts, in the sense that

they can accurately assess the match between the product’s characteristics and their own tastes

before purchase (e.g., as is the case when the product is closer to a search good). The analysis focuses

on the properties of the optimal first-period quantity Q∗1,1s (throughout our analysis, subscripts

“1s” and “2s” denote the “one-sided” and “two-sided” learning regimes, respectively).

The first-period quantity Q1 is chosen by the firm so as to maximizing its total expected profit,

πt,1s(Q1) = π1(Q1) +π∗2,1s(Q1), (4)

where π1(Q1) is the firm’s expected first-period profit and π∗2,1s(Q1) is the firm’s optimal expected

second-period profit (i.e., the firm’s expected profit assuming the second-period quantity is chosen

optimally following the events of the first period). The firm’s first-period expected profit π1(Q1) is

the function considered in the benchmark case of §4.1; recall that π1(Q1) has a unique maximum

at the myopic-optimal quantity Q∗1,m described in Proposition 1. In the two-period problem, any

deviation from the quantity decision Q∗1,m is attributed to the firm’s future-profit considerations.

Our approach will be to establish the properties π∗2,1s(Q1) with respect to Q1, which will in turn

determine the firm’s policy adjustment relative to Q∗1,m.

In doing so, it is useful to observe that there are two distinct channels through which the first-

period quantity decision Q1 affects the firm’s second-period profit: the first is the inventory channel,

which refers to leftover inventory carried forward from the first to the second period; the second

is the information channel, which refers to the informational gains achieved in the first period

(with regards to product value). It is possible to isolate these two channels by expressing the firm’s
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second-period profit (see Appendix A.1 for a detailed analysis of the firm’s second-period problem)

as π∗2,1s(Q1) = π∗2C,1s(Q1) +π∗2I,1s(Q1), where

π∗2C,1s(Q1) :=

∫ vc(Q1)

vl

cmin

{
(1− γ)

[
1− p

v

]+

,QL(Q1, v)

}
f(v)dv, and

π∗2I,1s(Q1) :=

∫ vc(Q1)

vl

(p− c)(1− γ)
[
1− p

v

]+

f(v)dv

+

∫ vh

vc(Q1)

[
pmin

{
(1− γ)

(
1− p

v

)
, (1− γ)

(
1− p

v2c(Q1)

)}]
f(v)dv

−
∫ vh

vc(Q1)

[
c(1− γ)

(
1− p

v2c(Q1)

)]
f(v)dv.

In words, π∗2I,1s(Q1) is the firm’s expected second-period profit assuming that all units sold in the

second-period will be newly-produced, while π∗2C,1s(Q1) is the expected second-period cost savings

associated with Q1, which come from the fact that the firm may have leftover inventory from the

first period (thus avoiding some production costs). The impact of the inventory channel is captured

in π∗2C,1s(Q1) through the nonnegative leftover inventory QL(Q1, v), which increases in Q1 under

any value realization v. On the other hand, the impact of the information channel is captured in

π∗2I,1s(Q1) through the stockout threshold vc(Q1), which is increasing in Q1—the higher the firm’s

first-period quantity decision the larger the range of value scenarios in which the firm is able to

learn v with perfect accuracy.

Using the above expressions, we next investigate the relationship between the firm’s first-period

quantity decision Q1 and the contributions of the two channels to the firm’s second-period profit.

Starting with the inventory channel, we observe that

Proposition 2. When learning is one-sided, the marginal expected value of cost savings
∂π∗2C,1s
∂Q1

is strictly positive for all Q1 ∈ [0,Qmax].

The result is intuitive: Under any realization of product value, the larger the number of units the

firm produces in the first period, the larger the number of leftover units, and therefore the lower

the production costs the firm will have to incur in the second period.6

The next result establishes an analogous property for the information channel.

Proposition 3. When learning is one-sided, the marginal expected value of information
∂π∗2I,1s
∂Q1

is strictly positive for all Q1 ∈ [0,Qmax].

That is, the value of gaining additional information by increasing the first-period quantity is positive

across all values of Q1 ∈ [0,Qmax]. The higher the first-period quantity, the higher the firm’s ability

6 Note that policies involving Q1 >Qmax (i.e., producing more than the maximum first-period demand) are strictly

dominated by the policy Q1 =Qmax, so that such policies do not require attention.
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to learn product value accurately (through the higher stockout threshold vc(Q1)). In turn, knowing

more about product value means that the firm is in a better position to match supply with demand

in the second period (and therefore avoid overage and underage costs) in a larger range of value

scenarios. As a result, the firm’s expected second-period profit increases. Note that Proposition 3

does not depend on the distribution of product value F or on the consumers’ type distribution G.

Returning now to the firm’s total profit function, we rewrite (4) as

πt,1s(Q1) = π1(Q1) +π∗2C,1s(Q1) +π∗2I,1s(Q1). (5)

Recall that from the benchmark analysis of §4.1, the first-period profit π1(Q1) is maximized at

Q∗1,m. Moreover, Propositions 2 and 3 suggest that π∗2C,1s(Q1) and π∗2I,1s(Q1) are strictly increasing

in Q1 ∈ [0,Qmax]; Proposition 4 follows immediately.

Proposition 4. When learning is one-sided, the optimal first-period quantity is strictly higher

than the myopic-optimal first-period quantity; that is, Q∗1,1s >Q
∗
1,m.

Increasing the quantity decision with respect to Q∗1,m results in second-period benefits both from an

inventory and from an informational perspective. Several existing papers offer analogous structural

results (e.g., Bensoussan and Sethi 2009, Ding et al. 2002, Lariviere and Porteus 1999, Lu et al.

2005), albeit typically under the assumption of perishable inventory (in that case, the inventory

channel discussed here vanishes and the information channel is the only driver behind the increase

in the firm’s optimal quantity decision). These results form the basis of the well-known “stock

more” prescription, which refers to the optimality of increasing supply relative to the critical-fractile

quantity when the firm operates in the presence of learning.

Before proceeding to the analysis of the two-sided learning regime, it will be convenient to assume

that the distribution F is sufficiently well-behaved so that

Assumption 1. The function πt,1s(Q1) is unimodal in Q1 ∈ [0,Qmax].

6. Two-Sided Learning

We now consider the case of two-sided learning. In this case, the firm and the consumers learn

the product’s value simultaneously over time, so that, unlike the case of one-sided learning, the

information generated in the first period now affects the second-period demand. We capture two-

sided learning in our model by assuming that the second-period consumers are non-experts who

cannot accurately assess the product’s value before purchase (e.g., as is the case when the product

is closer to an experience good), and update their value beliefs along with the firm after observing

the first-period sales. The analysis of this section follows the same approach as that in §5; wherever

possible, we refer to the preceding analysis to shorten the exposition.
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Focusing again on the first-period quantity decision, the firm chooses Q1 to maximize

π∗t,2s(Q1) = π1(Q1) +π∗2,2s(Q1).

Using the same approach as in the case of one-sided learning (see Appendix A.2 for a detailed

analysis of the firm’s second-period problem), the firm’s optimal expected second-period profit

can again be expressed as the sum of profit contributions from the inventory and the information

channels. In this case, we may write π∗2,2s(Q1) = π∗2C,2s(Q1) +π∗2I,2s(Q1), where

π∗2C,2s(Q1) :=

∫ vc(Q1)

vl

cmin

{
(1− γ)

[
1− p

v

]+

,QL(Q1, v)

}
f(v)dv, and

π∗2I,2s(Q1) :=

∫ vc(Q1)

vl

(p− c)(1− γ)
[
1− p

v

]+

f(v)dv+

∫ vh

vc(Q1)

(p− c)(1− γ)

[
1− p

v̂(Q1)

]+

f(v)dv.

Note first that for any given Q1, the scenarios in which the firm has leftover inventory are identical

under one- and two-sided learning so that π∗2C,2s(Q1) = π∗2C,1s(Q1). It follows from §5 that the

marginal expected value of cost savings remains strictly positive for all Q1 ∈ [0,Qmax] under two-

sided learning (i.e., Proposition 2 holds unchanged).

By contrast,

Proposition 5. When learning is two-sided, the marginal expected value of information
∂π∗2I,2s
∂Q1

is strictly negative for all Q1 ∈ [0,Qmax].

Recall that in the case of one-sided learning, the firm is always willing to pay in exchange for

more accurate information (see Proposition 3). Interestingly, under two-sided learning we find that

the firm is always willing to pay for less accurate information. Put differently, if being better-

informed means that the consumers will also be better-informed, the firm prefers to know less

about the product’s value. We note that the result of Proposition 5 holds beyond our specific model

assumptions, under the sufficient condition that demand for the product is concave in the product’s

value (see the proof of Proposition 5); furthermore, in §8.1 we demonstrate that the result also

holds under an alternative mode of learning, based on product reviews.

The key intuition underlying the difference between Propositions 3 and 5 has to do with the

difference in the informational role of the quantity decision under the two learning regimes. Under

one-sided learning, the quantity decision Q1 should be viewed as a tool for information extraction

from the innovators. Figuratively speaking, we might think of a situation where nature has disclosed

all information relevant to the firm-consumer interaction to the consumer population, leaving the

firm at an informational disadvantage. To improve its position in the second period, the firm

must extract this information from the first-period consumers; in turn, the higher the first-period

quantity decision, the more precise the information the firm extracts from the innovators (because
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the firm extracts perfect information in a larger range of value scenarios). In the case of information

extraction, more is always better.

By contrast, under two-sided learning, the quantity decision Q1 should be viewed mainly as a

tool for information transmission to the followers. Here, we think of an alternative situation where

nature has left both the firm and the second-period consumers uninformed. The firm can again

attempt to extract information from the innovators, but now whatever is learned by the firm is also

learned by the consumers. Thus, the firm’s first-period quantity decision now determines not only

the information extracted from the innovators, but also, and more importantly, the information

transmitted from the innovators to the followers. Generally speaking, information transmission as

a process to be optimized is significantly more complex, and the simple “more-is-better” rationale

often does not apply (see, for example, Alizamir et al. (2018), Papanastasiou et al. (2017)).

In the specific case of our model, the quantity decision Q1 is positively related to the threshold

vc(Q1), below which (above which) learning of product value is perfect (imperfect), as described

in Lemma 1. Therefore, the firm’s choice of Q1 can be thought of as a decision that controls both

the firm’s and the consumers’ ability to learn product value, with higher quantities resulting in

increased learning. In the case of one-sided learning, more information creates value for the firm

by putting it in a better position to match supply with demand in the second period. By contrast,

in the case of two-sided learning, more information destroys value for the firm by decreasing its

ability to extract surplus from the now-better-informed consumers. As a result, the “more-is-better”

property associated with one-sided learning is replaced by a “less-is-better” property when learning

is two-sided.

Turning to the firm’s optimal first-period quantity decision, Proposition 5 suggests that from an

informational perspective, the firm is better off by stocking fewer units in the first period, so as to

reduce the information transmission from the innovators to the followers. This observation leads

to our main result.

Theorem 1. When learning is two-sided:

(i) The optimal first-period quantity is strictly lower than the optimal first-period quantity under

one-sided learning; that is, Q∗1,2s <Q
∗
1,1s.

(ii) If the proportion of innovators is sufficiently small, the optimal first-period quantity is also

strictly lower than the myopic-optimal first-period quantity; that is, there exists γ̄ ∈ (0,1) such

that if γ < γ̄ then Q∗1,2s <Q
∗
1,m.

Both statements of the theorem are a direct consequence of Proposition 5. To understand the first

statement, recall from the analysis of §5 that when learning is one-sided, future considerations

cause the firm to increase its quantity decision relative to the myopic optimal quantity Q∗1,m, owing
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to the combined effects of the inventory and information channels, both of which provide incentives

for increasing the first-period production quantity (see Propositions 2 and 3). When learning is

two-sided, the inventory channel still “pushes” the firm to increase its quantity relative to Q∗1,m,

but now the information channel “pulls” in the opposite direction (see Proposition 5); the end

result is Q∗1,2s <Q
∗
1,1s.

Consider next the second statement of Theorem 1. To understand this result, it is helpful to

compare the preferred policy of a firm operating under one-sided learning against that of a firm

operating under two-sided learning, as we scale down the proportion of innovators γ. Observe that

as γ approaches zero, the firm’s expected first-period profit as well as the effects of the inventory

channel vanish, leaving only the information channel to determine how the firm chooses its first-

period quantity. From Propositions 3 and 5 it then follows that

lim
γ→0

Q∗1,1s =Qmax, while lim
γ→0

Q∗1,2s = 0.

In either case, the firm chooses the first-period quantity to optimize the learning process. For a firm

operating under one-sided learning, this implies choosing a policy that enables perfect learning in all

possible realizations of product value v. By contrast, for a firm operating under two-sided learning,

optimizing the learning process in fact implies choosing a policy that prevents any learning from

occurring.

More generally, for the firm to choose a first-period quantity higher than Q∗1,m, it must be the case

that the impact of the inventory channel dominates that of the information channel; in other words,

if the inventory channel is sufficiently “weak,” then the optimal quantity satisfies Q∗1,2s < Q∗1,m.

One sufficient condition for the latter is that γ is sufficiently low, because the optimal first-period

quantity decision is upper bounded by γ, and therefore the total inventory cost-savings cannot

exceed γc (at the same time, the impact of the information channel increases in the size of the

follower market, 1− γ). Although not part of our model, obvious alternative sufficient conditions

include high inventory holding costs and inventory perishability.

To complement the result of Theorem 1, we present the numerical experiments of Figure 1.

We model product value as a Beta-distributed random variable with parameters (av, bv), where

av ∈ [1.5,3] and bv = 4.5− av, thus capturing uncertainty distributions ranging from right- to left-

skewed. We plot the optimal first-period quantity under one- and two-sided learning Q∗1,1s and

Q∗1,2s, as well as the myopic-optimal quantity Q∗1,m for four combinations of our model parameters

with relatively low and high production costs c, and low and high proportion of innovators γ.

From these plots, we note that (i) as suggested by Proposition 4, the optimal quantity under

one-sided learning Q∗1,1s is always higher than the myopic-optimal quantity Q∗1,m, (ii) as suggested
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by Theorem 1, the optimal quantity under two-sided learning Q∗1,2s is always lower than Q∗1,1s, and

(iii) as also suggested by Theorem 1, Q∗1,2s is often lower than both Q∗1,1s and Q∗1,m, and in these

cases the firm typically chooses to forego essentially all potential first-period profit.7 By comparing

the plots of Figure 1 in the vertical direction, we observe that the lower the proportion of innovators

γ, the smaller the firm’s first-period quantity decision relative to the size of the first-period market;

this is consistent with Theorem 1, which suggests a positive relationship between γ and Q∗1,2s.

By comparing the plots of Figure 1 in the horizontal direction, we find that the optimal quantity

decision is also lower when the production cost c is higher, consistent with standard newsvendor

intuition. The above comparisons also lead to the conclusion that the firm tends to operate under

the second regime of Theorem 1 (where Q∗1,1s <Q
∗
1,m) when the market is not too optimistic about

the product’s value and when production costs are relatively high.

𝑐 = 0.2
𝛾 = 0.3

𝑎𝑣𝑎𝑣

𝑐 = 0.2
𝛾 = 0.15

𝑎𝑣

𝑐 = 0.1
𝛾 = 0.15

𝑎𝑣

𝑐 = 0.1
𝛾 = 0.3

Figure 1 Optimal first-period quantities under one- and two-sided learning. Parameter values: p= 0.3, F Beta-

distributed with bv = 4.5− av.

7 Rather than refusing to serve the innovators completely, this observation is in fact more consistent with a limited

release; in particular, it can be shown that a policy with Q1 small but positive dominates the policy Q1 = 0.
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The experiments of Figure 2 explore in more detail the value of the threshold γ̄ used in Theorem

1(ii) to describe the critical proportion of innovators below which the firm’s optimal quantity choice

Q∗1,2s is lower than the myopic-optimal quantity Q∗1,m given in Proposition 1. The plots suggest that

when production costs are relatively low, the critical proportion ranges from approximately 10% to

40% with lower values corresponding to environments where the market is more optimistic about

the product’s value. When costs are relatively high, the critical proportion range is approximately

10% to 100%, while we further observe that when the value distribution is right-skewed, the optimal

policy involves a limited release irrespective of the innovator proportion γ.

𝑎𝑣 𝑎𝑣

𝑐 = 0.2𝑐 = 0.1

Figure 2 Innovator threshold γ̄ described in Theorem 1(ii). Parameter values: p= 0.3, F Beta-distributed with

bv = 4.5− av.

To conclude this section, it is important to reiterate that the result of Theorem 1, and the

second statement of the result in particular, stands in contrast to existing work that supports the

optimality of an increase in the newsvendor quantity in the presence of learning. The source of

the difference is the two-sided nature of the learning process in our model, and the associated

negativeness of the value of information for the firm (in §8, we demonstrate the robustness of this

result under alternative model specifications). As a whole, these findings serve as a caution that

not all learning environments should be approached by firms in the same fashion, and underline the

importance of understanding the implications of operational decisions for learning on the demand

side before choosing the policy to be implemented.

7. Profit Implications

The preceding analysis demonstrates that the firm’s optimal quantity decisions in a newsvendor

context can differ significantly depending on the learning regime in which the firm operates. In

this section, we investigate the implications of two-sided learning for firm profit. We focus on two
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relevant questions. First, under which learning regime is the firm better off ex ante? This question

may have implications for the firm’s efforts to inform the consumers about unobservable product

features ahead of the selling season. Second, by how much does firm suffer, in terms of profit, if it

fails to appropriately internalize the learning regime in which it operates?

To answer the first question, we perform a direct comparison of expected firm profit under the

two learning regimes. Recall that Proposition 4 (Theorem 1) suggests that when learning is one-

sided (two-sided), the firm takes actions in order to increase (decrease) learning. However, it is not

immediately obvious under which learning regime the firm achieves higher profit; our next result

addresses this question.

Proposition 6. The firm’s total expected profit is strictly higher when learning is two-sided.

It is interesting to observe that while the firm in some sense “dislikes” learning in the two-sided

regime and “likes” learning in the one-sided regime, it still prefers to operate in a two-sided learning

environment. To see why this is the case, consider the following thought experiment. Suppose that

the firm stocks the same first-period quantity in two separate environments that differ only in the

learning regime. Under either regime, the firm’s first-period profit is identical, and if no stockout

occurs in the first period, then the same is true for the firm’s second-period profit (since both the

firm and the consumers become fully informed). Now consider scenarios where a stockout occurs

in the first period. Under one-sided learning, the consumers know v but the firm does not, and it

follows from Proposition 3 that the firm would be strictly better off if it was also informed about v

(because the value of one-sided information is positive). However, even if this were the case, from

Proposition 5 it follows that the firm would be strictly better off if neither the consumers or itself

were informed (because the value of two-sided information is negative); the latter is exactly the

case in the event of a stockout under two-sided learning.8

Having established that two-sided learning represents a more profitable environment for the firm,

we next consider to what extent the firm’s profit suffers if it does not appropriately account for

the two-sidedness of the learning process. The following result is a qualitative one that compares

the performance of policies that either ignore learning altogether, or (erroneously) assume that

learning is one-sided.

8 For the consumers, two-sided learning typically introduces surplus losses (relative to one-sided learning) for both

the innovators and the followers. For the innovators, the two learning regimes are equivalent informationally, but

the firm’s decreased quantity decision under two-sided learning results in decreased access to the product in the

first period. For the followers, the imperfect learning outcomes that occur under high value scenarios lead to either

erroneous purchase decisions (when the updated value expectation is higher than the product’s true value, v̂(Q1)> v)

or to erroneous non-purchase decisions (when the updated value expectation is lower than the product’s true value,

v̂(Q1)< v); these losses typically outweigh the surplus losses that occur under one-sided learning in the highest value

scenarios where the second-period demand is undersupplied by the firm.
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Proposition 7. When learning is two-sided, if the proportion of innovators γ is sufficiently

small, then the myopic-optimal policy Q∗1,m results in strictly higher expected profit than the one-

sided-optimal policy Q∗1,1s; that is, πt,2s(Q
∗
1,1s)<πt,2s(Q

∗
1,m)<πt,2s(Q

∗
1,2s).

Proposition 7 suggests that when learning is two-sided and the proportion of innovators is small,

the myopic policy outperforms the one-sided optimal policy—interestingly, adjusting the quantity

decision to account for the wrong type of learning regime is worse than ignoring learning altogether.

The numerical experiments of Figure 3 suggest that the result often holds even when the proportion

of innovators is relatively large. Moreover, from these experiments we also observe that failing to

account appropriately for learning can lead to substantial profit losses for the firm, reaching up to

36% in Figure 3; in particular, the largest profit losses occur when the optimal two-sided policy

differs substantially from the myopic and one-sided optimal policies, which tends to occur for value

distributions ranging from symmetric to right-skewed.
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Figure 3 Fraction of expected profit achieved in a two-sided learning environment under policies Q∗1,2s, Q
∗
1,1s,

Q∗1,m. Parameter values: p= 0.3, c= 0.2, F Beta-distributed with bv = 4.5− av.

8. Model Extensions

In this section we present three extensions of our main model, with the goal of establishing the

robustness of our insights with respect to some of our model assumptions. In each extension we

focus on establishing riobustness of the basic observation that the marginal value of two-sided

information is negative (i.e., Proposition 5 in our main analysis), which in turn provides an incentive

for the firm to decrease the first-period quantity.
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8.1. Learning From Reviews

We consider first an extension of our model where consumer learning occurs on the basis of product

reviews (as opposed to product sales). To model learning from product reviews, we use the modeling

approach proposed in Bergemann and Välimäki (1997) and used more recently in Yu et al. (2015).

We assume that there are two possible states of the world θ ∈ {0,1}, such that when the state is

θ= 0 the product’s value is v, while when the state is θ= 1 the product’s value is v̄ > v. The firm and

all the consumers share a common prior belief over the state P0(θ= 1) =: b1, and we assume v > p

so that for any prior belief b1 ∈ (0,1) there is at least some positive demand for the product in the

first period. After purchasing the product, the first-period buyers generate product reviews which

are aggregated into a market signal ζ ∼ N(nθ,σ
√
n), where n is the volume of product reviews

(assumed to be equal to the volume of first-period purchases), and σ is a parameter that captures

review informativeness (for more details on the described modeling approach, see §2 in Bergemann

and Välimäki (1997) and §2.2 in Yu et al. (2015)). The second-period consumers observe the review

signal and update their beliefs via Bayes’ rule before making their own purchase decision.

In this model, notice first that demand for the product in the first period is given by D1(b1) =

γ
[
1− p

b1v+(1−b1)v̄

]
, so that the sales achieved by the firm in the first period are equal to S1 =

min{Q1,Qmax}, where Q1 is the firm’s first-period quantity decision and Qmax =D1(b1). The fol-

lowing proposition establishes that our basic result on the marginal expected value of information

persists in the model with learning from product reviews.

Proposition 8. When learning is two-sided and occurs on the basis of product reviews, the

marginal expected value of information
∂π∗2I
∂Q1

is strictly negative for all Q1 ∈ [0,Qmax].

The firm’s quantity decision Q1 determines the volume of sales S1 achieved in the first period,

which in turn is equal to the volume of product reviews n made available to consumers in the

second period. Thus, the result of Proposition 8 suggests that all else being equal, the firm prefers

fewer product reviews or, equivalently, less learning. The proof of the result relies on a different

approach to that of Proposition 5, but the core idea remains that of optimally controlling (i.e.,

restricting) the information transmission from the innovators to the followers, as described in §6.

This demonstrates that the informational considerations associated with the first-period quantity

decision are qualitatively similar to those in our main model, pushing the firm to decrease its

first-period quantity decision. Intuitively, these considerations become stronger as product reviews

become more informative and therefore more influential in shaping consumer beliefs.

8.2. Imperfect Experts

We consider next an extension of our model where the expert consumers are imperfect in their ex

ante assessment of the product. Specifically, we assume that before making a purchase decision,



Papanastasiou: Newsvendor Decisions with Two-Sided Learning 21

each expert consumer i receives an informative signal si = v+εi, where v is the product’s underlying

value and εi ∼N(0, σi) (our main model thus corresponds to the limit case σi→ 0). That is, in this

model the assessments of the expert consumers are correct on average, although the assessments

of individual experts may differ. When this is the case, the volume of sales that occur in the

first period serves as a market signal that aggregates the information contained in the individual

assessments of the expert consumers. The following proposition suggests that our model insights

are qualitatively robust with respect to imperfections in the experts’ product assessments.

Proposition 9. When learning is two-sided and the experts are imperfect in their assessments

of product value, the marginal expected value of information
∂π∗2I
∂Q1

is strictly negative for all Q1 ∈

[0,Qmax].

After receiving the signal si, each first-period consumer has an updated value expectation µ(si)

which is strictly increasing in si (this follows from the strict monotone likelihood property satisfied

by the signal si; see Milgrom (1981)). Thus, demand for the product in the first period D1(v)

is strictly increasing in the product’s value v. The learning process described in §4.2 remains

qualitatively intact, with the only difference being that the threshold function vc(Q1) given in

(3) must now be replaced by an alternative function vc2(Q1). To establish that the value of two-

sided information remains negative for the firm, it then suffices to point out that the function

vc2(Q1) retains strict monotonicity with respect to Q1, so that reducing the first-period quantity

results in decreased two-sided learning and increased second-period profits π∗2I associated with the

information channel, as described in §6.

8.3. Imperfect Sales Feedback

We now consider the case where sales feedback from the first period does not always become

observable to the consumers in the second. Specifically, we assume that consumers in the second

period become aware of the events that occurred in the first period with probability ζ (our main

model corresponds to the limit case ζ = 1). When ζ < 1, the dependence of the second-period

consumers’ purchase decisions on the firm’s first-period quantity decision is weaker. Nevertheless,

Proposition 10. When learning is two-sided and the followers observe first-period sales with

probability ζ > 0, the marginal expected value of information
∂π∗2I
∂Q1

is strictly negative for all Q1 ∈

[0,Qmax].

That is, as long as the events of the first period are observed by consumers in the second period

with some positive probability, the firm still has an incentive to reduce its first-period quantity

decision, although we note that the strength of this incentive clearly increases with ζ. Consider

first the extreme case where ζ = 0. In this case, the followers remain uninformed in the second
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period, irrespective of the firm’s actions in the first period. Thus, the informational channel has

no bearing on the firm’s decisions, and the firm’s first-period quantity is higher than the myopic

quantity Q∗1,m as a result of the effects of the inventory channel. As ζ increases from zero, the effect

of the information channel grows stronger, and the firm’s incentive to reduce its early quantity

decision increases.

9. Conclusion

This paper has focused on highlighting the relative differences between two learning regimes in

the context of the classic newsvendor problem. The first is the “one-sided” learning regime, where

the firm’s current decisions generate information on demand-side characteristics that do not affect

the future demand faced by the firm. The second is the “two-sided” learning regime, where the

firm’s current decisions generate information on product characteristics that directly affect future

demand. Essentially, under one-sided learning, future demand for the product is exogenous to the

firm’s learning process, while under two-sided learning future demand is endogenous to it.

We have argued that the firm’s quantity decisions should be viewed in a different light depending

on the learning regime in which the firm operates. When learning is one-sided, the firm’s policy is a

tool for information extraction and should be approached in a more-information-is-better fashion.

By contrast, when learning is two-sided, the firm’s policy is a tool for information transmission,

and the firm’s approach often needs to be reversed. As a consequence, we have established that the

well-known prescription to “stock more” should be tempered when learning is two-sided, and may

sometimes cease to apply altogether. We have further shown that a firm operating under two-sided

learning is able to extract higher expected profits, and that the loss for the firm from failing to

account for the appropriate learning regime when planning its operations can be substantial.

In closing, we note that the high-level prescription of stocking less in environments where two-

sided learning is prevalent appears to be consistent with the perceived policy of undersupplying

the early demand implemented by technology companies such as Apple and Xiaomi. The existing

literature and popular press have proposed a number of potential benefits associated with early

supply shortages.9 Many such benefits leverage behavioral/emotional aspects of the consumers’

decision-making process; for instance, deliberate supply shortages have been previously associated

with “hunger marketing,” a strategy intended to trigger a psychological response to scarcity that

causes an increase in future demand (e.g., tech.co (2015)), while in the presence of peer-to-peer

consumer communications, Papanastasiou et al. (2016) highlight that supply shortages induce

customer self-selection which can result in favorably biased word-of-mouth. Our paper offers an

9 We note that rather than forming part of a deliberate policy, stockouts may occur for a variety of reasons including

inaccurate demand forecasts, capacity constraints, production lead times, etc.
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alternative explanation for the success of understocking, with a basis in rational decision making:

Stocking less in the early stages of the selling season may allow the firm to optimally control the

information transmission between early and late adopters. In this respect, the mechanism identified

in our paper is related to the signaling theory proposed by Stock and Balachander (2005), whereby

the firm uses supply shortages as a device to communicate the value of its product to the consumers.

Among other differences between the two, the signaling mechanism assumes that the firm has

private knowledge of the product’s value for the consumers (which implies knowledge of product

attributes and performance, as well as consumer tastes) and may therefore be more applicable

to cases of more mature technologies and/or less innovative experience goods. By contrast, our

information transmission mechanism assumes that the firm faces uncertainty about the product’s

value for the consumers (either owing to uncertainty about product attributes and performance,

or consumer tastes, or both) and may therefore be more applicable to cases of new technologies

and/or more innovative goods.

Appendix

A. Analysis of the Firm’s Second-Period Problem

A.1. One-Sided Learning

Suppose the firm’s quantity decision in the first period is Q1, and let the number of units leftover at the end

of the first period be denoted by QL(Q1, v) := [Q1−D1(v)]
+
. If a stockout did not occur in the first period

(i.e., if v < vc(Q1)), the firm has a positive amount of leftover inventory and is able to infer the product’s

value perfectly. The firm’s profit in the second period is

π2l(Q2l) = pmin

{
(1− γ)

[
1− p

v

]+
,QL(Q1, v) +Q2l

}
− cQ2l, (6)

and the optimal quantity decision is Q∗2l =
[
(1− γ)

(
1− p

v

)
−QL(Q1, v)

]+
. That is, if there are enough leftover

units to satisfy all second-period demand, there is no additional production in the second period; in the

opposite the case, the firm produces as many additional units as are required to meet the demand.

On the other hand, if a stockout occurred in the first period (v≥ vc(Q1)), there are no leftover units and

the firm can only infer the product’s value up to v≥ vc(Q1). The firm’s second-period profit is given by

π2h(Q2h) = pE

[
min

{
(1− γ)

[
1− p

v

]+
,Q2h

} ∣∣∣ v≥ vc(Q1)

]
− cQ2h. (7)

Observe that this is essentially the one-period newsvendor model of §4.1, where we can replace F in Propo-

sition 1 with the appropriate lower-truncated cdf to get

Q∗2h = (1− γ)

[
1− p

v2c(Q1)

]+

, where v2c(Q1) = F−1

[
p− (1−F [vc(Q1)])c

p

]
(8)

and vc(Q1) is given in (3). Lemma 2 catalogues the optimal second-period policy.

Lemma 2. When learning is one-sided:
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(i) If a stockout does not occur in the first period (v < vc(Q1)), the optimal second-period quantity is

Q∗2l =
[
(1− γ)

(
1− p

v

)
−QL(Q1, v)

]+
.

(ii) If a stockout occurs in the first period (v ≥ vc(Q1)), the optimal second-period quantity is Q∗2h = (1−

γ)
[
1− p

v2c(Q1)

]+
,where v2c(Q1) = F−1

[
p−(1−F [vc(Q1)])c

p

]
.

We may then write down the firm’s optimal expected second-period profit under one-sided learning as

π∗2,1s(Q1) =

∫ vc(Q1)

vl

π2l(Q
∗
2l;v)f(v)dv+

∫ vh

vc(Q1)

π2h(Q∗2h;v)f(v)dv

where,

π2l(Q
∗
2l;v) = p(1− γ)

[
1− p

v

]+
− c
[
(1− γ)

(
1− p

v

)
−QL(Q1, v)

]+
π2h(Q∗2h;v) = pmin

{
(1− γ)

(
1− p

v

)
, (1− γ)

(
1− p

v2c(Q1)

)}
− c(1− γ)

(
1− p

v2c(Q1)

)
.

A.2. Two-Sided Learning

Suppose the firm’s first-period quantity decisions is Q1. Note first that if a stockout does not occur in the

first period (v < vc(Q1)), the firm and the consumers are able to infer the product’s value perfectly. In these

scenarios the firm’s problem is equivalent to that under one-sided learning (under one-sided learning, only

the firm is initially uninformed about v; if a stockout does not occur in the first period, then the firm is able

to perfectly infer v, so that both the firm and the consumers are informed in the second period, as is the

case under two-sided learning). Thus, the firm’s profit function when no stockout occurs is again

π2l(Q2l) = pmin

{
(1− γ)

[
1− p

v

]+
,QL +Q2l

}
− cQ2l,

and the optimal quantity decision is Q∗2l =
[
(1− γ)

(
1− p

v

)
−QL

]+
, as described in §A.1.

The difference between the two learning regimes emerges in scenarios where value is relatively high and

a stockout occurs in the first period (v ≥ vc(Q1)). As in the case of one-sided learning, the firm in these

scenarios can only infer value up to v≥ vc(Q1); however, this is now also the case for the consumers it faces.

The firm’s profit function becomes

π2h(Q2h) = pmin

{
(1− γ)

[
1− p

v̂(Q1)

]+

,Q2h

}
− cQ2h, (9)

where recall that v̂(Q1) is the firm and the consumers’ updated value expectation following a first-period

stockout at quantity Q1 (see (2)). Notice that the firm’s problem when learning is two-sided is simpler,

in the sense that the firm no longer faces demand uncertainty in the second period. Since the firm and

the consumers hold identical value beliefs, the firm can perfectly predict and act to fulfill all second-period

demand. Accordingly, the optimal quantity decision is

Q∗2h = (1− γ)

[
1− p

v̂(Q1)

]+

, (10)

and the preceding discussion is summarized in Lemma 3.

Lemma 3. When learning is two-sided:
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(i) If a stockout does not occur in the first period (v < vc(Q1)), the optimal second-period quantity is

Q∗2l =
[
(1− γ)

(
1− p

v

)
−QL

]+
.

(ii) If a stockout occurs in the first period (v ≥ vc(Q1)), the optimal second-period quantity is Q∗2h = (1−
γ)
[
1− p

v̂(Q1)

]+
, where v̂(Q1) is given in (2).

Comparing Lemmas 2 and 3, the firm’s optimal second-period policy under the two learning regimes is

identical when a stockout does not occur in the first period, while when a stockout occurs, v2c(Q1) in (8)

is replaced by v̂(Q1). As in §A.1, the above expressions can then be used to write down the firm’s optimal

expected second-period profit under two-sided learning, π∗2,2s(Q1).

B. Endogenous Pricing

In this section we consider the case where the product’s price is also a decision variable for the firm. The

following corollary is a straightforward extension of Theorem 1.

Corollary 1. When learning is two-sided, if γ is sufficiently small the optimal price p∗2s and first-period

quantity Q∗1,2s satisfy

Q∗1,2s <γ

(
1− p∗2s− a

vr

)
, where vr = F−1

[
p∗2s− c
p∗2s

]
. (11)

To arrive at the above result, we consider any price (including the optimal one) and then search for the

corresponding optimal quantity decision. Since the result of Theorem 1 holds for any arbitrary price, we next

note that a sufficiently small γ ensures that the optimal quantity must be less than the myopic-optimal one

given in Proposition 1. While it is possible to draw some conclusions on the value of the optimal price relative

to the optimal quantity, perhaps the more interesting question is to what extent the firm’s optimal quantity

policy (and the associated comparison with the myopic and one-sided policies) is affected by endogenizing the

pricing decision. In Figure 4, we conduct experiments where we solve the firm’s price-and-quantity problem

for a range of value distributions. Overall, the observations from these experiments are consistent with those

of the exogenous-price analysis; that is, endogenizing the pricing decision does not appear to affect the firm’s

optimal quantity decision in any qualitative way. Furthermore, we note that the optimal price under one-

and two-sided learning is quite similar and higher than the myopic-optimal price, and the main point of

differentiation in the firm’s optimal policy is the quantity decision.

C. Proofs

Proof of Proposition 1

Profit in the first period is

π1(Q1) = pE[min{γD(v),Q1}]− cQ1

= p

∫ vh

vl

[min{γD(v),Q1}]f(v)dv− cQ1,

where D(v) = 1−G
(
p

v

)
=
[
1− p

v

]+
. Recall vc(Q1) in (3) is the critical product value that induces a stockout

in the first-period when the quantity decision is Q1 for Q1 ∈ [0,Qmax]. Then

π1(Q1) = pE[min(γD(v),Q1)]− cQ1
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Figure 4 Optimal prices and first-period quantities under one- and two-sided learning. Parameter values: c= 0.1,

F Beta-distributed with bq = 4.5− aq.

= p

(∫ vc(Q1)

vl

γD(v)f(v)dv+

∫ vh

vc(Q1)

Q1f(v)dv

)
− cQ1

= p

(∫ vc(Q1)

vl

γD(v)f(v)dv+Q1F̄ (vc(Q1))

)
− cQ1

The first-order derivative with respect to Q1 is

dπ1

dQ1

= p

(
γD(vc(Q1))f(vc(Q1))

dvc
dQ1

+ F̄ (vc(Q1))−Q1f(vc(Q1))
dvc
dQ1

)
− c

By definition of vc(Q1), we have γD(vc(Q1)) =Q1 so that

dπ1

dQ1

= pF̄ (vc(Q1))− c (12)

Note that vc(Q1) is strictly increasing in Q1 ∈ [0,Qmax] so that F̄ (vc(Q1)) is strictly decreasing and therefore

so is dπ1

dQ1
. It follows that π1(Q1) is unimodal in Q1 ∈ [0,Qmax]. We next note that dπ1

dQ1
|Q1=Qmax < 0, and that

(12) has a unique root at Q1 such that

vc(Q1) = F−1

[
p− c
p

]
=: vm,
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assuming such a Q1 exists in the interval [0,Qmax]. If it does exist, then the optimal quantity is given by

Q∗1,m = γ
(

1− p

vm

)
, while if it does not exist, then π1(Q1) is strictly decreasing in Q1 ∈ [0,Qmax] and the

optimal quantity is Q∗1,m = 0. Hence, we have

Q∗1,m = γD (vm) = γ

[
1− p

vm

]+

,

Proof of Lemma 2

See the analysis preceding the result in the main text.

Proof of Proposition 2

Let D1(v) = γ
[
1− p

v

]+
and D2(v) = (1− γ)

[
1− p

v

]+
. We have

π∗2C(Q1) := c

∫ vc(Q1)

vl

min{D2(v),QL(Q1, v)}f(v)dv

Note that for any Q1, D2(v) is nondecreasing in v, while QL is nonincreasing v. Therefore, we have

π∗2C(Q1) := c

∫ vw

vl

D2(v)f(v)dv+ c

∫ vc

vw

(Q1−D1(p, v))f(v)dv

for some vw such that D2(vw) =Q1−D1(vw)> 0. Taking derivative with respect to Q1,

∂π∗2C
∂Q1

=c
∂vw
∂Q1

D2(vw)f(vw)− c ∂vw
∂Q1

(Q1−D1(vw))f(vw) + c
∂vc
∂Q1

(Q1−D1(vc))f(vc) + c

∫ vc

vw

f(v)dv.

By definition of vw we have D2(vw) =Q1−D1(vw), and by definition of vc we have D1(vc) =Q1, so that

∂π∗2C
∂Q1

= c

∫ vc

vw

f(v)dv

Since vw < vc, it follows that
∂π∗

2C

∂Q1
> 0.

Proof of Proposition 3

Under one-sided learning, we have for D2(v) = (1− γ)[1− p

v
]+

π∗2I = (p− c)
∫ vc(Q1)

vl

D2(v)f(v)dv+ p

∫ vh

vc(Q1)

min{D2(v),Q∗2h(Q1)}f(v)dv− cQ∗2h(Q1)

= (p− c)
∫ vc(Q1)

vl

D2(v)f(v)dv+ p

∫ vr(Q∗
2h(Q1))

vc(Q1)

D2(v)f(v)dv+Q∗2h(Q1)[pF̄ (vr(Q
∗
2h(Q1)))− c],

for some vc(Q1)< vr(Q
∗
2h(Q1))< vh. From the proof of Proposition 1, we have that at the optimal second-

period quantity Q∗2h(Q1) is such that [pF̄ (vr(Q
∗
2h(Q1)))− c] = 0, so that the above reduces to

π∗2I = (p− c)
∫ vc(Q1)

vl

D2(p, v)f(v)dv+ p

∫ vr(Q∗
2h(Q1))

vc(Q1)

D2(p, v)f(v)dv.

Note that there is a one-to-one correspondence between vc(Q1) and Q1 (these are positively related) and a

one-to-one correspondence between vc(Q1) and vr(Q
∗
2h(Q1)) (these are also positively related). It is conve-

nient to treat vc(Q1) directly as the decision variable. We then have

∂π∗2I
∂vc

= (p− c)D2(p, vc)f(vc)− pD2(p, vc)f(vc) + p
∂vr
∂vc

D2(p, vr)f(vr)

=−cD2(p, vc)f(vc) + p
∂vr
∂vc

D2(p, vr)f(vr) (13)
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Note next that vr satisfies Ft(vr) = p−c
p

, where Ft is the cdf of v truncated from below at vc (see proof of

Proposition 1). Therefore, we have

Ft(vr) =
F (vr)−F (vc)

1−F (vc)
=
p− c
p

F (vr) = F (vc) +
p− c
p

(1−F (vc))

Differentiating with respect to vc,

f(vr)
∂vr
∂vc

= f(vc)
c

p
,

and inserting into (13) we get

∂π∗2I
∂vc

= cf(vc)[D2(p, vr)−D2(p, vc)]> 0,

where the last inequality follows from vr > vc. Furthermore, since the consumers’ type distribution is the

standard uniform distirbution, the last expression simplifies to

∂π∗2I
∂vc

= cf(vc)(1− γ)

[
p

vc
− p

vr

]
= cf(vc)(1− γ)p

[
vr − vc
vrvc

]
Proof of Proposition 4

The first-order derivative of the profit function (5) with respect to Q1 is

∂πt,1s
∂Q1

=
∂π1

∂Q1

+
∂π∗2C
∂Q1

+
∂π∗2I
∂Q1

.

The myopic-optimal quantity decision Q∗1,m given in Proposition 1 is such that ∂π1

∂Q1

∣∣
Q1=Q∗

1,m

= 0, and π1(Q1)

is unimodal so that ∂π1

∂Q1

∣∣
Q1<Q

∗
1,m

> 0. Furthermore, from the Propositions 2 and 3 we have that
∂π∗

2C

∂Q1
,
∂π∗

2I

∂Q1
> 0

for all Q1 ∈ [0,Qmax]; it then follows that Q∗1,1s >Q
∗
1,m.

Proof of Lemma 3

See the analysis preceding the result in the main text.

Proof of Proposition 5

We prove the result for the more general case of a demand function D(v) which is strictly concave in v

for v ∈ [vl, vh], where vl := {minv : v ∈ [vl, vh],D(v) ≥ 0} (note that this holds under our specific model

assumptions, according to which D(v) =
[
1− p

v

]+
). We show that under this condition, π∗2I(Q) is strictly

decreasing in Q for all Q∈ [0,Qmax].

We have

π∗2I(Q) = (1− γ)(p− c)

[∫ vc(Q)

vl

D(v)f(v)dv+

∫ vh

vc(Q)

D(v̂(Q))f(v)dv

]
Fix some Q1 ∈ (0,Qmax], and note that this then uniquely determines v̄1 := vc(Q1) through (3). Now consider

some Q2 such that Q2 < Q1, which in turn determines v̄2 := vc(Q2) and note that v̄2 < v̄1. Define also

v̂1 := v̂(Q1) and v̂2 := v̂(Q2) (see (2)). We will show that if D(v) is strictly concave in v ∈ [vl, vh], then

π∗2I(Q1)<π∗2I(Q2). We have

π∗2I(Q1) = (p− c)

[∫ v̄1

vl

D2(v)f(v)dv+D2(v̂1)

∫ vh

v̄1

f(v)dv

]
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π∗2I(Q2) = (p− c)

[∫ v̄2

vl

D2(v)f(v)dv+D2(v̂2)

∫ vh

v̄2

f(v)dv

]
Since v̄2 < v̄1 and the two functions are therefore equivalent in the range v≤ v̄2, it suffices to show that∫ v̄1

v̄2

D2(v)f(v)dv+D2(v̂1)

∫ vh

v̄1

f(v)dv <D2(v̂2)

∫ vh

v̄2

f(v)dv. (14)

Taking the left-hand side of the inequality, we have∫ v̄1

v̄2

D2(v)f(v)dv+D2(v̂1)

∫ vh

v̄1

f(v)dv

= [F (v̄1)−F (v̄2)]

∫ v̄1

v̄2

D2(v)f(v)

[F (v̄1)−F (v̄2)]
dv+ [1−F (v̄1)]D2(v̂1)

< [F (v̄1)−F (v̄2)]D2(v̂21) + [1−F (v̄1)]D2(v̂1),

where v̂21 :=E[v | v̂2 ≤ v≤ v̂1] and the inequality follows from strict concavity of D2(v) by applying Jensen’s

inequality. Next, define P21 := F (v̄1)−F (v̄2)

1−F (v̄2)
and P1 = 1−F (v̄1)

1−F (v̄2)
, so that

[F (v̄1)−F (v̄2)]D2(v̂21) + [1−F (v̄1)]D2(v̂1) = (1−F (v̄2)) (P21D2(v̂21) +P1D2(v̂1))

< (1−F (v̄2))D2(P21v̂21 +P1v̂1)

= (1−F (v̄2))D2(v̂2),

where the inequality follows by applying Jensen’s inequality, and the last equality holds by the law of total

expectation. The last expression is the right-hand side of inequality (14), thus proving the result.

Proof of Theorem 1

For the first statement, note that

∂πt,1s
∂Q1

=
∂π1

∂Q1

+
∂π∗2C,1s
∂Q1

+
∂π∗2I,1s
∂Q1

, and
∂πt,2s
∂Q1

=
∂π1

∂Q1

+
∂π∗2C,2s
∂Q1

+
∂π∗2I,2s
∂Q1

.

The first-period is identical under the two learning regimes and the effect of the inventory channel is

unchanged, so that
∂π∗

1C,1s

∂Q1
=

∂π∗
2C,2s

∂Q1
. However, from Propositions 3 and 5, we have for all Q1 ∈ [0,Qmax] that

∂π2I,1s

∂Q1
>

∂π2I,2s

∂Q1
. It then follows by the unimodality of πt,1s(Q1) that Q∗1,2s <Q

∗
1,1s.

For the second statement, note that the firm’s total profit is given by πt,2s(Q1) = π1(Q1) + π∗2C(Q1) +

π∗2I(Q1), where

π1(Q1) = pE

[
min

{
γ
[
1− p

v

]+
,Q1

}]
− cQ1

π∗2C(Q1) =

∫ vc(Q1)

vl

cmin

{
(1− γ)

[
1− p

v

]+
,QL(Q1, v)

}
f(v)dv

π∗2I(Q1) =

∫ vc(Q1)

vl

(p− c)(1− γ)
[
1− p

v

]+
f(v)dv+

∫ vh

vc(Q1)

(p− c)(1− γ)

[
1− p

v̂(Q1)

]+

f(v)dv.

Note that there is a one-to-one correspondence between vc and Q1. Treating vc as the decision variable, we

have πt,2s(vc) = π1(vc) +π∗2C(vc) +π∗2I(vc),

π1(vc) = pE

[
min

{
γ
[
1− p

v

]+
,Q1(vc)

}]
− cQ1(vc)
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π∗2C(vc) =

∫ vc

vl

cmin

{
(1− γ)

[
1− p

v

]+
,QL(Q1(vc), v)

}
f(v)dv

π∗2I(vc) =

∫ vc

vl

(p− c)(1− γ)
[
1− p

v

]+
f(v)dv+

∫ vh

vc

(p− c)(1− γ)

[
1− p

v̂(Q1(vc))

]+

f(v)dv.

We next consider the derivative of πt,2s(vc) in the limit γ→ 0. The derivatives of π1 and π∗2C are given by

(see also the proofs of Propositions 1 and 2)

∂π1

∂vc
= γ

(
p

v2
c

)(
pF̄ (vc)− c

)
∂π∗2C
∂vc

= γ

(
p

v2
c

)
c

∫ vc

vm

f(v)dv,

so that limγ→0
∂π1

∂vc
= limγ→0

∂π∗
2C

∂vc
= 0 for any vc > 0. Next, from Proposition 5 we have limγ→0

∂π∗
2I

∂Q1
< 0, which

implies limγ→0
∂π∗

2I

∂vc
< 0 so that limγ→0 v

∗
c = vl. It follows by continuity of v∗c in γ that for sufficiently small

γ, we have v∗c < vm (where vm is given in Proposition 1), which is equivalent to Q∗1,2s <Q
∗
1,m.

Proof of Proposition 6

Under one-sided learning, let the optimal first-period quantity be Q∗1. Now suppose that under two-sided

information the firm employs the same policy. Then first-period profit under the two learning regimes is

identical; we will show that expected second-period profit is higher in the case of two-sided learning. Note

first that the second-period profit is the same under the two regimes for any v < vc(Q
∗
1). Now consider cases

v ≥ vc(Q∗1). From Proposition 3 we know that if the consumers are informed (as is the case under one-

sided learning), the firm also prefers to be informed. That is, if π∗c denotes expected profit across scenarios

v≥ vc(Q∗1) when the consumers are informed but the firm is uninformed, and π∗b denotes the (hypothetical)

profit when both are informed, then π∗b >π
∗
c . Next, from Proposition 5 we have that if being informed means

that consumers are also informed, the firm prefers both parties to be uninformed. Letting π∗u denote expected

profit across scenarios v ≥ vc(Q∗1) when both the firm and the consumers are uninformed, this implies that

π∗u >π
∗
b . Combining the two inequalities, we have π∗u >π

∗
b >π

∗
c completing the proof.

Proof of Proposition 7

We treat the first-period stockout threshold vc as the firm’s decision variable (note that for any given γ there

is a one-to-one correspondence between vc and Q1; see (3)). Let v∗c,m, v∗c,1s, and v∗c,2s denote the optimal

myopic, one-sided and two-sided thresholds, respectively. Now, note that v∗c,m is independent of γ, while

from Propositions 3 and 5 we have limγ→0 v
∗
c,1s = vh and limγ→0 v

∗
c,2s = vl so that v∗c,2s < v∗c,m < v∗c,1s (this is

because limγ→0 πt,2s(Q1) = π∗2I(Q1) and π∗2I(Q1) is monotonic increasing in Q1 under one-sided learning and

monotonic decreasing under two-sided learning). This implies that Q∗1,2s <Q∗1,m <Q∗1,1s. It then follows by

monotonicity of π∗2I(Q1) in Q1 (see Proposition 5) that in the limit γ→ 0 we have πt,2s(Q
∗
1,1s)<πt,2s(Q

∗
1,m)<

πt,2s(Q
∗
1,2s).

Proof of Proposition 8

Since the demand for the product in the first period is deterministic and given by D1(b1), under any quantity

decision Q1 ≤Qmax =D1(b1) the amount sales achieved by the firm, and therefore the volume of product

reviews generated in the first period, is n = Q1 (it is straightforward to show that any quantity decision



Papanastasiou: Newsvendor Decisions with Two-Sided Learning 31

Q1 > Qmax is strictly suboptimal and therefore need not be considered). Moreover, under any quantity

decision Q1 ≤Qmax, the consumers’ updated value belief b2 is viewed in the first period as a random variable

(as it depends on the ex ante uncertain content of product reviews); let ψ(·;Q1) denote the corresponding

pdf.

Next, note that the firm’s second-period profit can be expressed as π∗2(Q1) = π∗2C(Q1) +π∗2I(Q1) in accor-

dance with the analysis of §6. (Notice that in this model we have π∗2C(Q1) = 0 for any Q1 ≤Qmax, since under

any such quantity decision there are no leftover units in the first period and all units sold in the second period

must therefore be newly produced; we thus have π∗2(Q1) = π∗2I(Q1).) To calculate π∗2I(Q1), we point out that

conditional on the content of product reviews and the resulting updated belief b2, demand in the second

period is deterministic and given by D2(b2) = (1− γ)
[
1− p

b2vh+(1−b2)vl

]
, so that the optimal second-period

quantity is simply Q∗2(b2) = D2(b2), and the corresponding optimal profit is π∗2(b2) = pD2(b2). To find the

expected second-period profit as a function of Q1, we take expectation with respect to the updated belief

b2, noting that its pdf depends on Q1; in particular, we have

π∗2I(Q1) =

∫ 1

0

π∗2(b2)ψ(b2;Q1)db2 =

∫ 1

0

pD2(b2)ψ(b2;Q1)db2

To establish that the above expression is strictly decreasing in Q1 for all Q1 ∈ [0,Qmax], we note that (a)

D2(b2) is positive, increasing and strictly concave in b2, and (b) by Proposition 1(ii) of Yu et al. (2015),

the distribution of the updated belief b2 is strictly second-order stochastically decreasing in the first-period

quantity Q1. Observations (a) and (b) together imply that π∗2I(Q1) is strictly decreasing in Q1.

Proof of Proposition 9

By the strict monotone likelihood ratio property of the agents’ signals, we have that the updated value

expectation µ(si) of agent i is strictly increasing in her private signal si. The agent’s willingness to pay for

the product is then given by zi = xiµ(si). Let W (z;v) denote the cdf of zi; note that W (z;v) is strictly

decreasing in v. Demand in the first period is then given by D1(v) = γ(1−W (p;v)).

Since D1(v) is strictly increasing in v, if the firm stocks Q1 units in the first period and a stockout does not

occur, product value can be perfectly deduced through D1(v) = S1 =Q1. On the other hand, if a stockout

does not occur, then product value can be deduced only up to D1(v) ≥ S1 = Q1, or equivalently, only up

to v ≥ vc2(Q1) for an appropriate function v2c(Q1). Moreover, note that strict monotonicity of D1(v) in v

implies that vc2(Q1) is strictly increasing in Q1. To prove the result, we may then replace vc(Q1) with v2c(Q1)

in the proof of Proposition 5.

Proof of Proposition 10

The firm’s total expected profit as a function of Q1 is πt,2s(Q1) = π1(Q1) + π∗2(Q1), where π∗2(Q1) denotes

expected profit under the optimal second-period quantity. As in §6, we write π∗2(Q1) = π∗2C(Q1) + π∗2I(Q1),

and focus on π∗2I(Q1) in order to establish that
dπ∗

2I

dQ1
< 0. Recall that π∗2I(Q1) is the firm’s optimal expected

profit assuming all units sold in the second period are newly produced. When the followers receive first-

period information (and therefore learning occurs) with probability ζ, we have π∗2I(Q1) = ζπ∗2I,L(Q1) + (1−
ζ)π∗2I,N(Q1), where π∗2I,L(Q1) (π∗2I,N(Q1)) is the firm’s profit when learning occurs (when learning does not

occur). Now, observe that when learning does not occur, demand in the second period is independent of Q1,

so that π∗2I,N(Q1) is also independent of Q1 and
dπ∗

2I,N

dQ1
= 0. Next, note that when learning does occur, we

have
dπ∗

2I,L

dQ1
< 0, as this is the case covered by Proposition 5. Therefore, we have

dπ∗
2I

dQ1
= ζ

dπ∗
2I,L

dQ1
< 0.



32 Papanastasiou: Newsvendor Decisions with Two-Sided Learning

Proof of Corollary 1

Fix any price p. By Proposition 1, the quantity decision Qm = γ
(

1− p

vr

)
, where vr = F−1

[
p−c
p

]
maximizes

the firm’s expected first-period profit. By Theorem 1(ii), for γ sufficiently small the optimal quantity is

strictly smaller than Qm. Since Theorem 1 holds for any arbitrary price, it follows that the optimal policy

{p∗2s,Q∗1,2s} satisfies Q∗1,2s <γ
(

1− p∗2s
vr

)
.
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