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This paper proposes a theory of firm-induced scarcity in the early stages of a new product’s selling season.

By restricting supply, the firm induces self-selection of customers who are likely to generate the most positive

product reviews; this can be advantageous for the firm if, as suggested by existing empirical evidence,

subsequent consumers do not appropriately account for the selection bias in the early review sample. We

develop a novel model of quasi-Bayesian social learning that allows us to test the implications of this theory.

Our analysis yields three main insights. First, the described rationale constitutes a profitable strategy for

the firm only in settings characterized by price rigidity and only if the product’s quality is not too high with

respect to prior market expectations; for such cases, we provide guidelines on optimal pricing and quantity

decisions. Second, although induced scarcity represents an effort by the firm to manipulate the social learning

process, this may result not only in an increase in the firm’s profit, but also in the consumers’ surplus. Third,

product scarcity may act as an effective substitute for dynamic pricing, allowing the firm to approximate

dynamic-pricing outcomes while charging a fixed price.

1. Introduction

Apple products always seem to be stocked out for several weeks following their introduction. Hav-

ing developed a culture of early supply shortages, the computing giant induces eager consumers to

compete with one another to secure a unit before the product stocks-out. The result is the recurring

theme of queues building up, with thousands camping outside Apple stores all over the world for

days in advance of product launch (e.g., The Los Angeles Times 2011). The official story behind

these shortages is typically one of unexpectedly high demand coupled with constraints on produc-

tion capacity (e.g., Reuters 2012). However, the frequency of such stock-outs often raises suspicions

that this may in fact be a deliberate strategy; and these suspicions appear to be consistent with

the words of a former high-ranking employee:

“When we were planning the launch of the iPod across Europe, one of the important things

we had to manage was to make sure we under-supplied the demand, so that we’d only role it

out almost in response to cities crying out for those iPods to become available – that’s how we

kept that kind of ‘cachet’ for the iPod in its early years. And we’d use extensive data research

to understand what the relative strength of doing that in Rome versus Madrid would be.”

Andrew McGuinness, former European head of Apple’s advertising agency (BBC 2011).
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Apart from the notable example of Apple, early stock outs are commonly observed for other experi-

ential products including high-tech consumer electronics such as Samsung’s Galaxy (The Guardian

2013) and Palm’s Pre (CNET 2009), and gaming consoles such as Sony’s PlayStation (The Wall

Street Journal 2014) and Microsoft’s Xbox (CNN 2013). Most of the aforementioned firms have

been accused, from time to time, of “shortage conspiracies” (e.g., Bloomberg Businessweek 2005).

In the existing academic literature, there are two main theories as to why a firm would deliber-

ately induce product scarcity. The first is that of “buying frenzies,” which shows that early supply

shortages can be beneficial either when prices are dynamic or product scarcity persists in the long-

term (DeGraba 1995); yet scarcity strategies appear to be employed even when prices are fixed

and availability in the long-term is ample. The second is a signalling-based theory, which shows

that scarcity can be beneficial provided that consumers who are uninformed about a new product’s

quality cannot observe the purchasing decisions of (or communicate with) other, better-informed

consumers (Stock and Balachander 2005). However, stock-out events in the examples mentioned

above tend to be widely-publicized in popular media, and consumers often discuss their purchasing

and consumption experiences in online platforms. In this paper, we propose and investigate an

alternative explanation for firm-induced scarcity, which may apply to settings where the existing

theories do not.

Our explanation is based on social learning (SL), a term we use throughout to describe the

process by which potential buyers learn from the reviews of consumers who have already purchased

the product. The theory is simple and consists of the following two components:

(1) Product scarcity induces competition among customers which, with the aid of an appropriate

rationing mechanism, results in the limited supply being allocated to customers who are ex

ante likely to generate the most positive product reviews.

(2) This biased sample of reviews influences customers remaining in the market, resulting in

increased overall product adoption.

To illustrate the first point, we present the anecdotal observations of Figure 1, where early stock

outs of Apple products were accompanied by higher average ratings (as compared to the products’

long-run average ratings). We believe these observations to be associated with the allocation of the

limited supply on the basis of “waiting lines” (i.e., queues), which are known to result in efficient

rationing of demand (Holt and Sherman 1982): put simply, consumers who are ex ante most likely

to enjoy their experience with the new product (and therefore to generate a positive review ex post)

are also those who are most likely to queue up first (and therefore to be among those who receive

a unit before the product stocks out). The second point is the essence of a SL phenomenon that

has been empirically-documented by Li and Hitt (2008): when engaging in SL, owing to cognitive

and/or informational limitations, customers are unwilling and/or unable to account appropriately
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for selection bias in product reviews. Our theory is that the two points put together may create a

rationale for the firm to deliberate induce scarcity in the early stages of the selling season.

To investigate this theory and its implications, we consider a stylized model where a monopo-

list firm sells a new experiential product to a fixed population of consumers with heterogeneous

preferences. The product is sold over two periods, with the first period representing the product’s

launch phase. In the event that demand in the launch phase outstrips supply, excess demand is

rationed efficiently. Any consumer who purchases the product in the first period posts a review

which reflects her ex post opinion of product quality: this opinion depends on the product’s inher-

ent quality (which is ex ante unknown and valued equally by all consumers) but is also influenced

by the buyer’s idiosyncratic preferences. Consumers remaining in the market in the second period

observe the first-period reviews before deciding whether to purchase in the second period.

To capture the empirical finding of Li and Hitt (2008), which is at the core of our scarcity theory,

we develop a quasi-Bayesian model of SL (see Camerer et al. 2003, Rabin 2013). Our model is

parameterized so as to nest fully-rational learning (i.e., Bayes’ rule) as a special case, but our

focus is on the case where learning is less-than-fully rational and consumers do not (sufficiently)

account for the selection bias in the launch-phase reviews. The firm seeks to maximize its profit by

controlling the product’s price and the quantity made available in each selling period. A scarcity

strategy is defined as one where the firm makes fewer units available in the first period than the

number of units demanded at the firm’s chosen price.

We consider first the case of fixed pricing, consistent with out motivating examples, and seek

to verify the profitability of a scarcity strategy.1 Restricting supply in the launch phase allows the

firm to achieve a higher average rating (as in Figure 1), however, it also entails a smaller volume

of launch-phase reviews. The latter has the effect of product reviews carrying less “weight” in

influencing second-period consumers; as a result, the decision to induce scarcity is not straightfor-

ward. We show that the firm’s pricing-and-quantity problem has a unique solution, and derive a

necessary and sufficient condition under which a scarcity strategy is optimal. We demonstrate that

this condition can be expressed as an upper threshold on the product’s quality, whereby scarcity is

beneficial provided the product’s quality is not significantly higher than customers’ ex ante expec-

tations – in these cases, we provide guidelines on how optimal pricing-and-quantity strategies, as

well as firm profit, depend on the product’s and the consumers’ characteristics.

We next consider the welfare implications of scarcity strategies. We observe that when the firm

optimizes both the product’s price and the launch-phase quantity, this generally leads to an increase

in total welfare. Interestingly, in many cases where the firm induces deliberate stock outs, we find

1 On one occasion, Apple reduced the iPhone’s price just two months after its launch, a decision that resulted in
significant customer backlash; the firm was eventually forced to refund early buyers (The New York Times 2007).
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that the increase in total welfare is attributed not only to an increase in the firm’s profit, but also

to an increase in consumer surplus. In particular, the net effect of product scarcity on consumer

surplus depends on a comparison between two opposing effects: on one hand, biased reviews under

product scarcity cause some customers to purchase the product erroneously, leading to losses in

consumer surplus; on the other, product scarcity is typically accompanied by the firm with lower

prices, resulting in a surplus gain.

Finally, we consider the case where the firm employs dynamic pricing. We demonstrate that

(in the context of our theory) product scarcity cannot be beneficial for the firm under dynamic

pricing, and highlight that scarcity strategies under fixed pricing effectively act as a substitute for

dynamic pricing. Pursuing this line of thought, we find that product scarcity may allow the firm to

achieve profits close to those under dynamic pricing while charging a fixed price. This finding may

be of particularly importance in settings characterized by price-rigidity, where firms are reluctant

or unable to price dynamically, for example, because of fairness considerations or market norms.

Figure 1 Average rating (cumulative) for Apple iPad1, iPad2 and iPad3 following their introduction in March

2010, 2011 and 2012 respectively. The decreasing average rating suggests that early buyers rated the

product more highly on average than subsequent buyers (data collected from Amazon.com via web

crawler).

2. Literature Review

This paper proposes a mechanism through which inventory scarcity strategies can be used to

influence demand for a newly-introduced product. As such, our work contributes to the literature

than lies on the intersection between marketing and operations management. Recent examples of

research in this area include Jerath et al. (2010), who study last-minute and opaque selling to

strategic consumers; Dai and Jerath (2013), who examine salesforce compensation under inventory

considerations; Lobel et al. (2013) and Besbes and Lobel (2014) who investigate the timing of new

product launches and dynamic pricing under strategic consumer behavior, respectively.
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The notion that scarcity renders products more desirable is intuitively appealing (for work in

psychology that focuses on how consumers interpret product scarcity see, for example, Lynn (1992)

and Verhallen and Robben (1994)), but it is not always clear why the firm would not simply

increase prices or production to alleviate the mismatch between supply and demand. One theory

as to why the firm would deliberately induce scarcity is that of “buying frenzies,” first proposed by

DeGraba (1995) (see also Courty and Nasiry (2012) for a dynamic model of frenzies). According

to this theory, the firm under-produces its product in order to induce consumers to purchase

before they become informed of their individual valuations, thus appropriating more consumer

surplus. Buying frenzies may occur either when consumers anticipate a future price increase, or

when they expect to be rationed if they delay their purchase; none of the two seem to apply

to the settings we seek to capture, where the product’s price is typically constant and future

availability is ample. Denicolò and Garella (1999) suggest that the firm may find it profitable to

restrict early supply when demand rationing is proportional, so as to take advantage of the presence

of high-value consumers by increasing price later in the season; this mechanism again relies on

prices being dynamic. Another explanation is provided by the signalling-based theory of Stock and

Balachander (2005). The authors show that uninformed customers may interpret product scarcity

as a signal of high product quality, because this implies that other, better-informed customers chose

to purchase. However, the rationale here relies on uninformed customers not being able to observe

whether sales to informed customers actually occurred, and not being able to communicate with the

informed consumers. These assumptions are plausible in some cases but may be less so in others,

particularly for high-profile products that enjoy widespread media coverage. The explanation for

deliberate supply shortages proposed in this paper addresses cases where visibility of purchases

and communication between the consumer base (e.g., through product reviews) are key features of

the setting in consideration.

The consumers’ ability to communicate and learn from each other is the central component of

our theory; as such, this paper connects to the literature on SL. In this literature, there are two

prevailing approaches to modeling peer-to-peer learning, which may be described as action-based

and outcome-based. Action-based SL typically considers homogeneous agents who receive private

iid signals regarding the true state of the world (e.g., product quality), and observe the actions of

their predecessors (e.g., adoption decisions) before deciding on their own action. In such settings,

the seminal papers by Banerjee (1992) and Bikhchandani et al. (1992) demonstrate that herding

can be rational, but that rational herds may contain very little information. While earlier work

on action-based SL focused on studying the properties of the learning process in the absence of

strategic firm considerations, more recent work has incorporated firms’ efforts to modulate the SL

process through their decisions. Bose et al. (2006) consider a dynamic-pricing problem in which
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the firm uses price as a tool to screen the information transmitted to potential future buyers.

For a fixed price, Liu and Schiraldi (2012) find that a sequential (rather than a simultaneous)

product launch may benefit firms, since allowing a subset of markets to make observable purchasing

decisions before the rest may trigger an adoption herd. Relatedly, Debo and Van Ryzin (2009)

demonstrate that an imbalanced allocation of inventory to ex ante identical retailers may help

trigger an adoption herd when one of the retailers is seen to stock out.

The SL process in our model differs substantially, in that purchasing actions in themselves are

not informative because customers share identical ex ante information (i.e., a public prior belief

over quality). By contrast, SL occurs on the basis of observable ex post outcomes (i.e., buyers’

post-purchase perceptions of product quality), which have become particularly prevalent and influ-

ential in the post-Internet era. Godes and Silva (2012) investigate empirically the dynamics of

review-generation in online platforms, while Besbes and Scarsini (2013) study theoretically the

informativeness of online product ratings when consumers’ reports are based not only on their

personal experience, but also on how this compares to the product’s existing ratings. Given the

ever-increasing empirical evidence on the association between buyer reviews and firm profits (e.g.,

Chevalier and Mayzlin 2006), a growing body of work studies how firms can modulate SL outcomes

in online settings through their operational decisions. Ifrach et al. (2011) consider monopoly pricing

when buyers report whether their experience was positive or negative, and subsequent customers

learn from these reports according to an intuitive non-Bayesian rule (see also Bergemann and

Välimäki (1997) who analyze optimal price paths in a duopolistic market). Kuksov and Xie (2010)

investigate how pricing should be combined with frills that enhance consumers’ product experi-

ences. Jing (2011) and Papanastasiou and Savva (2015) analyze dynamic-pricing policies when

consumers may strategically delay their purchase in anticipation of product reviews. The majority

of existing research motivated by SL in online settings focuses on the interaction between pricing

decisions and the SL process. By contrast, our focus is on decisions pertaining to product availabil-

ity – the association between quantity decisions and SL outcomes appears to be under-explored in

the literature.

While the above papers focus on issues pertaining to “electronic word-of-mouth,” our work also

connects to the classic word-of-mouth literature. A distinguishing theme of this work is the attempt

to model peer-to-peer learning under cognitive limitations which are commonly encountered in

real-world settings. For instance, it may be too cumbersome for agents to incorporate all available

information in their decision process, but Ellison and Fudenberg (1993) show that even if consumers

use fairly naive learning rules (i.e., “rules-of-thumb”), socially efficient outcomes may occur in the

long run. Moreover, it may be costly or impossible for agents to gather all information relevant

to their decision, but Ellison and Fudenberg (1995) find that socially efficient outcomes tend to
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occur when agents sample the experiences of only a few others. To capture cases in which agents

may be likely to observe the experiences of a biased sample of predecessors (e.g., dissatisfied

consumers may be more vocal than satisfied consumers), Banerjee and Fudenberg (2004) investigate

how the learning process is affected under a range of exogenously specified sampling rules. The

quasi-Bayesian model of SL developed in this paper also recognizes the challenges encountered by

consumers in the learning process, however, our focus is more on how these challenges affect firm

policy, rather than the learning process itself.

Finally, our work also contributes to the literature that investigates the implications for the firm

of social factors (other than SL) that influence consumers’ decision-making process. Amaldoss and

Jain (2005a,b, 2015) consider pricing and branding implications of conspicuous consumption and

find experimental evidence of upward-sloping demand curves. Yoganarasimhan (2012) consider a

fashion firm’s “cloak or flaunt” dilemma when consumers use fashion in an attempt to fit in with

their peers but also to differentiate themselves by signaling their good taste. Candogan et al. (2012)

analyze pricing strategies when consumers experience positive consumption externalities in a social

network. Hu et al. (2013), study inventory implications within a newsvendor model where two

substitutable products are sold to consumers whose adoption decisions are directly influenced by

those of their predecessors.

3. Setting

We consider a monopolist firm offering a new experiential product to a fixed population of con-

sumers of total mass N . The product is sold over two periods, with the first period representing

the product’s launch phase which is of short time-length. We initially focus on the case where the

product’s price p is constant across the two selling periods (e.g., Stock and Balachander 2005); we

consider dynamic pricing subsequently in §6.3. Each consumer purchases at most one unit of the

product throughout the season.

The Consumers Customer i’s gross utility from consuming the product comprises two compo-

nents, xi and qi (e.g., Papanastasiou and Savva 2015, Villas-Boas 2004). Component xi represents

utility derived from product features which are observable before purchase (e.g., product brand,

film genre) and is known to the consumer ex ante. We assume that the distribution of xi compo-

nents in the population is Normal, N(x̄, σ2
x), with density function denoted by f(·), distribution

function F (·) and F̄ (·) := 1−F (·). Component qi represents utility derived from attributes which

are unobservable before purchase (e.g., product usability, actors’ performance) and is referred to

generically as the product’s quality for customer i; qi is ex ante unknown to the consumer and is

observed only after purchasing and experiencing the product. We assume that the distribution of
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ex post quality perceptions is Normal N(q̂, σ2
q), where σq captures the overall degree of heterogene-

ity in consumers’ ex post evaluations of the product and q̂ is the product’s mean quality, which

is unobservable to the consumers. The net utility from consuming the product for customer i in

either period is defined simply by xi + qi− p.2

In the first period (i.e., the launch phase), all consumers hold a common prior belief over q̂,

which may be shaped, for example, by the firm’s advertising efforts, media coverage and pre-release

expert reviews.3 This belief is expressed in our model through the Normal random variable q̃p,

q̃p ∼ N(qp, σ
2
p); in our analysis, we normalize qp = 0 without loss of generality. We assume that

consumers in the first period are willing to purchase a unit of the product provided their expected

utility from doing so is positive. Thus, our analysis abstracts away from strategic purchasing delays

aimed at acquiring more information about the product (see Papanastasiou and Savva 2015);

in §7.1 we demonstrate that explicit consideration of such behavior does not change our results

significantly.

In the event that demand outstrips supply (owing to firm-induced scarcity), we assume that

excess demand is rationed efficiently, meaning that consumers receive a unit in decreasing order

of their valuations (e.g., Su 2007, Su and Zhang 2008). Efficient rationing is a natural consequence

of consumers competing against each other for limited supply, and is a particularly applicable

assumption for cases such as those of Apple product launches, where consumers are seen to form

waiting lines leading up to product launch: in Appendix A, we provide (i) a summary of the theory

on “waiting-line auctions” by Holt and Sherman (1982) which describes how the formation of

waiting lines results in efficient rationing, and (ii) a treatment of the case of proportional rationing

of excess demand.4 All consumers who secure a unit in the first period report (truthfully) their ex

post opinion of product quality qi to the rest of the market through product reviews.5

In the second period, consumers remaining in the market observe the available reviews and

update their belief over the product’s mean quality from q̃p to q̃u, via the SL process described in

§4. Consumers whose expected utility from purchase is positive given their updated belief purchase

2 Since the first period of our model is short, we assume for simplicity that second-period utility is not discounted;
this has no qualitative bearing on our results.

3 Dellarocas et al. (2007) find that the correlation between the content of expert and consumer reviews is low, indicating
that the two are viewed by consumers as complementary sources of information; they also find that consumer reviews
produced shortly after the introduction of a new product are instrumental in predicting its long-term sales trajectory.

4 Alternative ways of achieving efficient rationing include the allocation of products on the basis of past consumer
purchases or loyalty programs, or the requirement that consumers display the alertness to reserve units in advance
of product launch.

5 It makes no qualitative difference whether all consumers report their experiences or whether each purchase generates
a report with some probability. We do not account “under-reporting bias” as described by Hu et al. (2009), but such
behavior would likely lend further support to our proposed scarcity mechanism.
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a unit in the second period.6

The Firm The firm is assumed to have knowledge of all model parameters through its market

research, and seeks to maximize its total expected profit. To focus attention on the association

between product availability and SL, we assume that the firm can produce and distribute any

quantity of the product in either selling period and incurs zero marginal costs of production. At

the beginning of the selling season, the firm chooses the price of the product p. Furthermore, at

the beginning of each period the firm decides on the quantity of the product released during that

period. The second-period quantity decision is trivial, since the firm will simply fulfill all second-

period demand. By contrast, as we will argue in our analysis, the firm may choose to induce scarcity

in the first period in order to benefit from the behavioral nature of the SL process. In the context

of our model, we define a scarcity strategy as follows.

Definition 1 (Scarcity Strategy). We say that the firm employs a scarcity strategy when

the number of units sold in the first period is smaller than the number of units demanded in the

first period.

Finally, we assume that the firm cannot signal product quality to the consumers through its

actions. This assumption is commonly employed in the SL literature (e.g., Ifrach et al. 2011, Sgroi

2002) in order to isolate the effects of peer-to-peer consumer learning. We note that this approach

is also supported by existing empirical evidence: for instance, Brown et al. (2012, 2013) observe

that consumers in the movie industry do not make quality inferences based on observable firm

actions.

4. A Quasi-Bayesian Model of Social Learning

We now describe SL process by which second-period consumers learn from the reviews of first-

period buyers. We first present a model of review-generation that allows for dependance of a buyer’s

review on her idiosyncratic preferences. We then develop a quasi-Bayesian model of learning that

incorporates the behavioral feature of SL identified in Li and Hitt (2008).

Review-Generation Each buyer’s review consists of her ex post perception of product quality

qi. Building on empirical evidence, we suppose that customer i’s ex post perception of product

quality is subject to random noise, but also to a systematic dependence on her idiosyncratic pref-

erences (e.g., Dellarocas et al. 2004, Hu et al. 2009, Li and Hitt 2008). To illustrate, suppose that

xi is the customer’s preference for a specific product brand. Intuitively, the same product may be

evaluated differently by buyers who share an identical preference for the brand (random noise),

6 Note that the described model implicitly assumes that all consumers in the market are aware of the product’s
existence from the beginning of the horizon – our model focuses on the informative role of SL (reviews provide
information on product performance), as opposed to its role in raising product awareness.



10 Papanastasiou, Bakshi and Savva

but also by buyers who differ in their brand preference (idiosyncratic). To capture this feature

of product reviews, we assume that an individual’s ex post qi is correlated with her preference

component xi, with correlation parameter ρ. In this case, customer i’s review follows

qi | xi = q̂+ ρ
σq
σx

(xi− x̄) + εi, (1)

where εi is zero-mean Gaussian noise of variance σ2
ε , σ

2
ε = σ2

q(1− ρ2). When ρ = 0, customer i’s

review is simply a random draw from the marginal distribution of ex post quality perceptions

N(q̂, σ2
q). By contrast, when ρ 6= 0, an individual’s review is a biased draw from N(q̂, σ2

q), with the

bias depending on the customer’s idiosyncratic preference component xi. The sign of ρ determines

the nature of the bias, while the magnitude determines its strength. Our analysis focuses on the

case ρ> 0, where customers with higher-than-average xi are likely to perceive higher-than-average

product quality; for instance if xi denotes preference for the Apple brand, then we might expect

higher-xi customers to enjoy their experience with the new iPad more than the average consumer.7

Alternative assumptions for parameter ρ are discussed in §7.2.

Learning from Reviews The dependance of reviews on preferences poses a challenge for con-

sumers attempting to learn product quality from the reviews of their peers, since although these

reviews contain information on q̂, they also reflect opinions which are, to some degree, subjective.

The rational approach to learning in this setting would be to “de-bias” each individual review by

accounting for the preferences of the reviewer, replace the set of biased reviews with its unbiased

counterpart, and then perform the belief update from q̃p to q̃u by applying Bayes’ rule. Specifically

(as we show in Appendix D), after observing a mass of n1 reviews, generated from buyers whose

mean preference component is x̄1, and whose average rating is R, the Bayesian posterior belief is

Normal q̃u ∼N(qu, σ
2
u), with

qu =
n1σ

2
p

n1σ2
p +σ2

q(1− ρ2)

(
R− ρσq

x̄1− x̄
σx

)
and σ2

u =
σ2
pσ

2
q(1− ρ2)

n1σ2
p +σ2

q(1− ρ2)
. (2)

In reality, the above process may be practically inconvenient, or indeed impossible, for two reasons:

first, it requires a potentially large amount of cognitive effort; second, it requires perfect infor-

mation on each reviewer’s characteristics and preferences. Especially in online settings, which are

characterized by large numbers of essentially anonymous reviews, both are likely to interfere with

consumers’ ability to learn in a fully-rational manner.

Given these difficulties, Li and Hitt (2008) investigate consumer learning empirically and find

that consumers take the simple approach of engaging in learning as if ρ= 0, essentially treating ex

7 When ρ < 0, customers with higher-than-average xi are likely to perceive lower-than-average product quality (for
instance, Mac users may be more sensitive to software glitches in the new iPad than PC users); extension of our
analysis to cases ρ < 0 follows in a straightforward manner.
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post quality perceptions as unbiased draws from the distribution N(q̂, σ2
q). Whether this approach

is the result of a conscious decision to avoid cognitive costs, a heuristic way of dealing with the

lack of sufficient information, or simply an erroneous judgement of the review-generating process

(or any combination of the three) is unclear. Rather than investigating the causes of this behavior,

our goal here is to embed this finding into a theoretical model of SL and test its implications.

Traditionally, behavioral biases in SL have been studied via intuitive heuristic learning rules

(proposed as alternatives to Bayes’ rule), which are typically custom-designed for the specific setting

of interest. More recently, an alternative approach, termed quasi-Bayesian, has been proposed –

Camerer et al. (2003) remark that they expect “the quasi-Bayesian view will quickly become the

standard way of translating the cognitive psychology of judgement into a tractable alternative to

Bayes’ rule,” while Rabin (2013) discusses its advantages in detail and illustrates the modeling

approach through examples from recent literature.

The main idea behind quasi-Bayesian learning models is to depart from Bayes’ rule in a controlled

manner, and only in the direction of the specific behavioral bias of interest. For example, consumers

may have an erroneous understanding of the stochastic process which generates the outcomes they

observe, but will otherwise behave as fully-rational agents and apply Bayes’ rule in an internally

consistent manner (see “warped-model Bayesians” in Rabin (2013); e.g., Barberis et al. (1998),

Rabin (2002)). We adopt the warped-model approach and suppose that consumers, for one reason

or another, operate under an erroneous internal model of the the stochastic process (1). Specifically,

under our proposed quasi-Bayesian model of SL, consumers misrepresent the link between product

reviews and reviewer preferences (captured by the correlation parameter ρ) and update their belief

from q̃p to q̃u ∼N(qu, σ
2
u), with

qu =
n1σ

2
p

n1σ2
p +σ2

q(1− ν2)

(
R− νσq

x̄1− x̄
σx

)
.8 (3)

Thus, the above learning rule nests both Bayesian updating (case ν = ρ) as well as behavioral

updating as documented in Li and Hitt (2008) (case ν = 0). The results of our analysis will apply

qualitatively for all cases of ν < ρ, where consumers are prone, at least to some extent, to behavioral

biases. However, for ease of exposition, results will be presented for the case of ν = 0; thus, attention

can be restricted to the simple learning rule

qu =
n1σ

2
p

n1σ2
p +σ2

q

R. (4)

Note that the above learning rule retains a number of attractive Bayesian features. The updated

mean belief is a weighted average between the prior mean qp (recall qp = 0) and the average rating

8 The posterior variance is given by σ2
u =

σ2
pσ

2
q(1−ν2)

n1σ2
p+σ2

q(1−ν2)
, but is not important for our analysis because consumers are

risk-neutral.
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from product reviews R. The weight placed on R increases with the number of reviews n1 (a larger

number of reviews renders the average rating more influential), with customers’ prior uncertainty

over quality σ2
p (consumers are more susceptible to reviews when the ex ante quality uncertainty

is large), and decreases with the noise in ex post product evaluations σ2
q (noise in reviews renders

SL less persuasive).

5. Preliminaries
5.1. The Rationale for Scarcity

According to our model setup, the number of reviews generated in the first period is equal to

the number (i.e., mass) of first-period purchases. If first-period buyers have an average preference

component of x̄1, then the average rating R of their reviews follows

R= q̂+ ρσq
x̄1− x̄
σx

+ εR, (5)

where εR denotes zero-mean Gaussian noise (i.e., sampling error). Let n1 denote the number of

units sold by the firm in the first period and let R̄ :=E[R] denote the expected average rating from

first-period reviews.

Lemma 1. The quantities n1 and R̄ are inversely related; that is, R̄ is strictly decreasing in n1.

All proofs are provided in Appendix B. Lemma 1 suggests that by deciding to restrict supply in the

launch phase and sell fewer units than demanded, the firm achieves a higher average product rating

(albeit with lower review volume). Thus, our model replicates patterns such as those observed in

Figure 1, where supply shortages early in the selling season were accompanied by higher average

ratings. The mechanism that achieves this effect relies on the combination of efficient rationing

(e.g., via a waiting-line allocation as in Apple launches) and preference-dependent reviews (e.g.,

Dellarocas et al. 2004, Hu et al. 2009, Li and Hitt 2008).

A scarcity strategy that achieves the above effect can be advantageous for the firm, because

consumers tend to underestimate the bias in the product’s average rating (Li and Hitt 2008).

Our quasi-Bayesian model of SL (4) captures this feature of consumer behavior by positing that

consumers (in contrast to the fully-Bayesian rule (2)) do not apply the necessary correction to the

average rating when engaging in learning from reviews.9

9 It is a straightforward exercise to show that scarcity cannot be optimal when customers are fully-Bayesian: to see
this, note that any bias in the average rating achieved through scarcity is perfectly accounted for by the consumers,
and thus offers no advantage to the firm.
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5.2. The Firm’s Problem

The firm’s problem may be expressed as

max
p,n1≤D1(p)

p (n1 +ER[D2(p,n1,R)]) , (6)

where D1(p) := NF̄ (p) denotes first-period demand for the product at price p (note that any

decision n1 > D1(p) may be mapped to the decision n1 = D1(p) without loss of generality, since

any amount of inventory in excess of D1(p) is leftover in the first period) and D2 is the number of

units demanded and sold in the second period, which depends on the SL outcome through n1 and

R (the functional form of D2 is made precise in the subsequent sections’ proofs). Because problem

(6) is not tractable analytically, in our analysis we approximate the firm’s problem by

max
p,n1≤D1(p)

p
(
n1 +D2(p,n1, R̄)

)
. (7)

That is, we solve the firm’s problem ignoring the zero-mean error term εR in (5). As will become

evident in our analysis, the firm’s decisions are associated with the systematic relationship between

n1 and R described in Lemma 1 (rather than the effects of random sampling error), which is

retained by the above simplification. Furthermore, in Appendix C we conduct extensive numerical

experiments to demonstrate that the optimal policies and profit functions differ only marginally

between problems (6) and (7), for all model parameters considered.

6. Scarcity Strategies
6.1. Exogenous Price

As a first step in our investigation, we examine the role of the launch-quantity decision n1 in

isolation, by solving the firm’s problem for an arbitrary and exogenously specified product price p.

The case of an exogenous price is practically relevant for cases in which the new product’s price is

constrained by previous versions of the product or consumers’ price expectations (e.g., iPad prices

do not tend to differ substantially from one version to the next) – even if the firm cannot price

freely, the quantity of the product made available in the launch phase remains a decision variable.

The inverse relationship between n1 ad R̄ described in Lemma 1 has a significant impact on the

SL process. In particular, defining

q̄u(n1) =
n1σ

2
p

n1σ2
p +σ2

q

R̄(n1)

as the posterior mean belief of consumers remaining in the market conditional on n1 units being

sold in the first period, it appears that the volume of reviews interacts with the average rating in

a non-trivial way to shape consumers’ updated perception of quality. Under an exogenous price p,

the firm’s optimal launch-quantity decision is characterized in Proposition 1.
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Proposition 1. Let τ ∗ be the unique solution to the implicit equation

τ = x̄− σxq̂
σqρ

+
Nσ2

p

σ2
q

∫ ∞
τ

(x− τ)f(x)dx. (8)

The following statements hold:

(i) If p < τ ∗, the unique optimal launch quantity is n∗1 =NF̄ (τ ∗)<D1(p).

(ii) If p≥ τ ∗, the unique optimal launch quantity is n∗1 =D1(p).

The rationale underlying Proposition 1 is as follows. For an exogenous price, the firm’s overall profit

increases with q̄u. In the proposition’s proof, we show that q̄u is unimodal in n1: too few first-period

sales generate a high average rating, but too few reviews to have a significant impact on consumers’

perceptions of quality; too many first-period sales generate an impactful but lower average rating.

The unimodal property of q̄u means that, from a SL perspective, there exists for the firm a unique

optimal segmentation of the market into higher-valuation reviewers and lower-valuation learners.

This segmentation strikes a balance between the volume and content of launch-phase reviews, and

depends on setting characteristics such as the product’s quality q̂ and consumers susceptibility to

persuasion σ2
p, among others. When the product’s price is below the threshold τ ∗, the firm achieves

this segmentation by restricting the number of units made available in the first period to NF̄ (τ ∗)

– this implies a deliberate under-supply of first-period demand for the product (i.e., a scarcity

strategy). By contrast, when the product’s price is above the threshold τ ∗ the firm is unable to

sell to all desired reviewers in the first period, because some of them are initially unwilling to

purchase owing to the product’s high price; in such cases, the unimodality of q̄u suggests that the

best feasible approach is to fulfill all demand in the first period.

6.2. Endogenous Price

We now consider the more interesting problem of optimizing both the product’s price and the

launch-phase quantity simultaneously. We first establish a necessary and sufficient condition for

product scarcity to be beneficial for the firm, and show that this can be expressed as a simple

condition on the product’s quality q̂. Next, we provide guidelines regarding the optimal implemen-

tation of scarcity strategies and how this depends on product and market characteristics. We then

consider the implications of induced shortages for total welfare and consumer surplus.

The result of Proposition 1 is particularly useful in gaining insight into the firm’s optimal pricing-

and-quantity policy. Specifically, given a set of product and consumer characteristics, Proposition

1 suggests that the firm may choose to employ one of two types of policy. The first type entails

relatively lower prices combined with a restricted number of units made available in the launch

phase (cases p < τ ∗ in Proposition 1). The second type employs relatively higher prices combined

with unlimited first-period product availability (cases p > τ ∗ in Proposition 1). While the first
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type achieves a better SL outcome than the second, the second type generates higher revenue-

per-purchase than the first. The following result provides a necessary and sufficient condition for

scarcity to form part of the firm’s optimal policy.

Proposition 2. A scarcity strategy is optimal if and only if

τ ∗h (τ ∗− q̄∗u)> 1,

where h(·) := f(·)
F̄ (·) and q̄∗u = maxn1∈[0,N ] q̄u(n1).

Proposition 2 fully characterizes the region of the parameter space where the firm optimally chooses

to induce product scarcity in the first period. The interaction between these parameters is complex,

but the most significant implication of the above result is the existence of a threshold on the

product’s quality q̂ that determines whether a scarcity strategy is profitable.

Corollary 1. There exists a threshold Q such that:

(i) If q̂ < Q, a scarcity strategy is optimal. The unique optimal pricing-and-quantity policy is

described by {p∗, n∗1}= {ξ,m}, where ξ satisfies ξh(ξ− q̄u(m)) = 1 and m=NF̄ (τ ∗)<D1(ξ).

(ii) If q̂ ≥Q, a scarcity strategy is not optimal. The optimal pricing-quantity policy is described

by {p∗, n∗1}= {ζ,D1(ζ)}, where ζ = arg maxpF̄ (p− q̄u(D1(p))).

The value of the threshold Q is typically high with respect to the consumers’ prior expectation of

quality qp – roughly speaking, a scarcity strategy benefits the firm unless the product’s quality is

unexpectedly high. To illustrate, we provide in Figure 4 region plots of parameter combinations

where scarcity is optimal; in the majority of cases, we observe that the quality threshold is such

that Q> qp +σp.

When product quality is below the threshold Q, the firm’s chosen policy is oriented towards

optimizing the SL process. The firm sets a price which is relatively affordable (p∗ < τ ∗), however,

it does not allow all consumers who wish to purchase a unit in the launch phase to do so; instead,

it uses its quantity decision to optimally segment the market into reviewers and learners. With

the help of the optimized SL process, it then achieves a high volume of sales in the second period.

By contrast, when quality is above the threshold Q, the firm takes a very different approach. It

sets a high price (p∗ > τ ∗) so that only a small number of consumers are willing to purchase in the

first period, and ensures ample product availability so that all such consumers obtain a unit in the

launch phase. The firm then relies on the product’s inherently high quality to drive second-period

sales, rather than an optimized SL process (which would entail lower revenue-per-purchase) – the

result is a moderate number of high-revenue purchases.

For the remainder of this section, we will focus on regions of the parameter space where scarcity

is optimal. We describe first the dependance of the optimal price-and-quantity policy, as well as

the firm’s profit, on market and product characteristics.
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(a) (b)

Figure 2 Region plots: white regions mark the optimality of a scarcity strategy.

Parameter values: N = 1000, x̄= 0.5, σx = 0.25, qp = 0, σp = 0.2, σq = 1, ρ= 0.15.

Proposition 3. The optimal scarcity strategy admits the following properties:

(i) The optimal price p∗ is strictly increasing in the product’s quality q̂, the correlation coefficient

ρ, and customers’ prior uncertainty σp.

(ii) The optimal launch quantity n∗1 is strictly increasing in q̂, strictly decreasing in σp, and strictly

increasing (decreasing) in ρ for q̂≥ 0 (q̂ < 0).

(iii) The firm’s optimal profit π∗ is strictly increasing in q̂, ρ, σp.

Intuitively, the firm will charge a higher price for products of higher quality, products for which

high-valuation consumers are highly biased in their opinions, and products for which subsequent

consumers are more uncertain of quality, and therefore more susceptible to the opinions of the

early buyers. The properties of the optimal launch quantity are less intuitive, and are associated

with the optimal segmentation of the market described in §6.1. For a fixed n1, an increase in

either q̂ or ρ results in an increased average rating R̄ (see (5)). Interestingly, increases in the two

parameters call for different types of adjustment in the firm’s launch quantity: as q̂ increases, the

firm always prefers to increase the launch quantity so that consumers place more weight on the

average rating when performing their update; by contrast, as ρ increases, the firm’s adjustment

of the launch quantity is contingent on the product’s quality: if quality is higher than consumers’

prior expectations, then the firm increases the launch quantity; if quality is lower than consumers’

prior expectations, then the firm reduces the launch quantity with the goal of extracting more

favorable review content R̄. Finally, the more uncertain consumers are about the product’s quality,

the fewer the units that are made available by the firm in the launch phase; in this case, just a

small number of reviews is enough to significantly influence consumers’ opinions of the product,

and the firm therefore chooses to focus on review content rather than volume.

Proposition 3 also allows for a comparison of the firm’s optimal policy and profit against two

benchmarks cases. The first is one where consumers do not engage in SL; in our model, this case
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Figure 3 Optimal pricing-quantity policies at different values of product quality q̂: (a) Optimal price p∗ (b) Opti-

mal launch quantity (normalized by total market size)
n∗1
N

. Parameter values: N = 1000, x̄= 0.5, σx =

0.25, qp = 0, σp = 0.1, σq = 1, ρ= 0.15.

is operationally equivalent to the case σp→ 0, because this entails that consumers’ updated mean

belief in the second period is equal to the prior mean belief (see (4)). The second benchmark

is one where consumers’ post-purchase opinions are unbiased (i.e., are not influenced by their

preferences); this corresponds to the case ρ= 0 in our general model (note that this benchmark is

also qualitatively equivalent to the case in which reviews remain biased, but consumer learning is

fully-Bayesian, i.e., ν = ρ > 0 in (3)). In comparison with both benchmark cases, we find that the

firm in the general case of our model (a) sets a higher price, (b) makes fewer units available in the

launch phase, and (c) achieves higher overall profit.

More generally, we point out that the firm’s profit in the absence of SL relies exclusively on

the belief with which consumers enter the market. By contrast, in the presence of SL the firm’s

profit depends less on this prior belief, and more on the SL process. This observation marks a more

general shift in the activities of the modern-day firm: while in times past firms focused more on

promotional efforts aimed towards influence consumers’ beliefs (i.e., consumers’ prior when there is

no SL in our model), there is now increasing investment in promoting and optimizing the SL process

(e.g., KIA Motors have recently launched an advertising campaign aimed towards promoting the

reviews of satisfied customers; see “Kia Reviews and Recommendations”).

To conclude this section, we conduct a numerical investigation into the implications of induced

supply shortages for consumer surplus and total welfare. By restricting supply in the launch phase,

the firm leverages the idiosyncratic preferences of early buyers to generate a more favorable SL

effect, thus increasing overall product adoption and profit. Importantly, supply shortages amplify

the bias in review content (this manifests as a higher average rating), which translates into (some)

“erroneous” customer decisions in the second period: had the information contained in product

reviews been unbiased, fewer consumers would have chosen to purchase in the second period.
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Presumably, policies involving supply shortages therefore result in a decrease in the consumers’

surplus; furthermore, if the loss in consumer surplus is larger than the firm’s gain in profit, then

supply shortages will be total-welfare-decreasing.

To make the above discussion more precise, we compare consumer surplus and total

welfare when the firm employs the pricing and inventory policy {p∗, n∗1} described in

Corollary 1 versus that when the firm chooses the product’s price pn, but satisfies all

first-period demand (i.e., releases at least F̄ (pn) units in the first period). More specif-

ically, since all consumers with xi > xb := p− qu(n1) = p− n1σ
2
p

n1σ2
p+σ2

q
q̂− ρ σq

σx
(x̄1 − x̄) purchase

the product in either the first or the second period, the ex-ante consumer surplus

when the firm charges price p and releases n units of inventory is given by

S(p,n) =Eq̂

[∫ ∞
p−qu(n)

(
xi + q̂+ ρ

σq
σx

(xi− x̄)− p
)
f(x)dx

]
,

and, since the price p paid by customers is a transfer to the firm, the total welfare is

given by

W (p,n) =Eq̂

[∫ ∞
p−qu(n)

(
xi + q̂+ ρ

σq
σx

(xi− x̄)

)
f(x)dx

]
.

We also note that only a fraction of these consumers, those with xi > xa :=
ρ
σq
σx
x̄+p−q̂

ρ
σq
σx

+1
,

enjoy a positive surplus. For those customers (if any) for whom xb ≤ xi <xa, the surplus

from consuming the product is negative – these are the customers who are over-

influenced by the SL process and make an “erroneous” purchasing decision. Given the

analytically intractable optimal pricing/invetnroy policy is not possible to investigate

how the consumer/total welfare changes analytically. However, in Table 1, we present

the difference in total welfare (∆W = W (p∗, n∗1)−W (pn, F̄ (pn))) and consumer surplus

(∆S = S(p∗, n∗1)−S(pn, F̄ (pn))) between the two policy types, for different combinations

of our model parameters; a positive difference indicates that W or S is higher under

policies involving scarcity.We note that our calculations do not include welfare losses associated

with the rationing process, which we do not explicitly model.

There are two main observations. First, the impact of policies involving supply shortages on

total welfare is positive (i.e., ∆W > 0) under all parameter combinations. This implies that any

losses in consumer surplus, which occur as a result of the firm’s manipulation of the SL process,

are more than compensated for by the increase in the firm’s profit. Second, surprisingly, we observe

that supply shortages in many cases constitute a “win-win” situation; that is, shortages often

generate an increase not only in the firm’s profit, but also in the consumers’ surplus. A closer

look (see Figure 4) reveals that shortages are beneficial for both the firm and the consumers when

the correlation ρ is low and the heterogeneity in consumers’ preference σx is high. When ρ is low,
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q̂ -0.15 -0.1 -0.05 0 0.05 0.1 0.15

∆W > 0 100% 100% 100% 100% 100% 100% 100%

∆S > 0 3% 10% 22% 37% 48% 60% 72%

Table 1 Impact of supply shortages on Total Welfare and Consumer Surplus: ∆W > 0 represents an increase in

Total Welfare, ∆S > 0 represents an increase in Consumer Surplus. Scenario parameters:

N ∈ {1000,3000,5000,7000}; qp = 0, σp = 0.1, q̂ ∈ {−0.15,−0.1,−0.05,0,0.05,0.1,0.15}; σx ∈ {0.4,0.6,0.8}, σq = 0.6,

x̄= 0.5; ρ∈ {0.1,0.15,0.2,0.25,0.3}.

the SL rule employed by consumers approaches Bayesian updating, therefore resulting in fewer

erroneous decisions. But even when ρ is relatively high, we observe that consumers may be better

off under shortage policies provided they are sufficiently heterogeneous in their preferences – this

is surprising, particularly since preference heterogeneity is a main contributor to the bias in the

SL process.

The reasoning here is as follows. When the firm fulfills all demand in the launch phase, it typically

chooses a relatively high price: the pricing decision represents a compromise between achieving

a “good” SL effect (by charging a high price and therefore selling to relatively high-valuation

consumers in the first period) and keeping the price low enough to drive a satisfactory amount of

overall sales. By contrast, when the firm optimizes the launch-phase quantity decision, the pricing

decision is decoupled from the SL process: the firm modulates the SL outcome through the quantity

decision, and sets the price at a lower level which favours wider product adoption. In the latter

case, although supply shortages amplify the bias in the review content, at the same time they

may leave consumers who purchase the product with higher, on average, surplus, despite the fact

that some consumers experience ex post negative outcomes. The consumers population is therefore

more likely to benefit from supply shortages when the difference in price between the two policies

is higher. As Figure 4 suggests, this occurs when consumers preferences are more heterogeneous,

because in this case consumers’ valuations for the product are more diffuse.

6.3. Dynamic Pricing

We now consider the case where the firm is able to charge a different price in the product’s

launch-phase (we note, however, that in many practical settings such a strategy can be difficult

to implement, for example, due to fairness considerations; e.g., The New York Times (2007)). Let

p1 and p2 denote the first- and second-period price, respectively. Our first result suggests that the

ability to price dynamically completely nullifies the benefit of induced product scarcity.

Proposition 4. Let {p∗1, p∗2} be the optimal dynamic-price plan and let n∗1d be the corresponding

optimal launch-phase quantity. Then n∗1d =D1(p∗1).
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Figure 4 Impact of supply shortages on consumer surplus: white (shaded) regions mark ∆S > 0 (∆S < 0).

Parameter values: N = 3000, qp = 0, σp = 0.1, q̂= 0, σq = 0.6, x̄= 0.5.

In the case of fixed pricing, by restricting supply to the optimal quantity described in Corollary 1,

the firm was able to achieve the optimal balance between the volume of product reviews and the

content of these reviews. However, this balance can also be achieved by attaching an appropriate

price-premium to first-period purchases since, in this case, the consumers from which the firm

wishes to extract reviews will be the only ones who are willing to purchase a unit in the first period.

In this way, the firm not only achieves the optimal reviewer-learner segmentation in the market,

it also extracts increased surplus from high-valuation consumers. As a result, any fixed-price-with-

scarcity strategy is dominated by some dynamic-pricing strategy where product availability is

ample.10

The result of Proposition 4 is interesting when compared against existing theories regarding the

optimality of early firm-induced supply shortages. For instance, DeGraba (1995) and Courty and

Nasiry (2012) describe how a monopolist may create an early supply shortage so as to induce a

“buying frenzy” among consumers, while Denicolò and Garella (1999) argue that early shortages

can be optimal provided rationing is not efficient. Crucially, such theories have dynamic pricing as a

requirement and do not apply to settings in which the product’s price remains unchanged after the

launch phase. By contrast, supply shortages in our setting are optimal only under a constant price.

The mechanism underlying the profitability of shortages in our paper is, of course, fundamentally

different from those in existing theories, which do not consider SL among consumers; nevertheless,

our results complement the existing literature in the sense that they advocate the optimality of

early supply shortages in distinctly different settings, in which fixed pricing is commonplace.

10 Keeping in line with the rest of our analysis, the result of Proposition 4 assumes that consumers do not strategically
delay their purchases; this does not affect the result or the underlying rationale, and allows for a fair comparison
between scarcity strategies and dynamic pricing.
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Proposition 4 also suggests that, under fixed pricing, the decision to restrict supply in the

first period may be viewed as an indirect method of price-discrimination. The next question we

consider is how the firm’s profit under this indirect method of price-discrimination (i.e., fixed price

with scarcity) compares with that under direct price-discrimination (i.e., dynamic pricing). The

difference in the firm’s profit under the two strategies is characterized in Proposition 5.

Proposition 5. Let π∗s denote firm profit under the optimal fixed-pricing policy {p∗, n∗1} with

n∗1 ≤D1(p∗), and let π∗d denote firm profit under the optimal dynamic pricing policy {p∗1, p∗2} with

p∗1 ≥ p∗2. Then the difference in profits between the two policies ∆π∗ = π∗d −π∗s is bounded by

(τ ∗− p∗)n∗1 ≤∆π∗ ≤ (p∗1− p∗2)D1(p∗1), (9)

where τ ∗ is the solution to (8).

The intuition for the bounds in Proposition 5 is as follows. First, consider the lower bound.

Under fixed pricing, firm profit is maximized at {p∗, n∗1}. When employing dynamic pricing, the

monopolist can at least charge p1 = τ ∗ and p2 = p∗ and extract profit which exceeds its profit under

fixed pricing by (τ ∗− p∗)n∗1; the excess profit is generated through the price-premium attached to

first period purchases. Next, consider the upper bound. Under dynamic pricing, the monopolist

achieves maximum profit at {p∗1, p∗2} (recall from Proposition 4 that the optimal quantity decision

is n∗1d =D1(p∗1)). When employing fixed pricing, the monopolist can at least set p= p∗2 and n1 =

D1(p∗1). In this way, the firm forgoes only the revenues extracted through the first period price

premium under dynamic pricing, which is the expression of the upper bound.

To complement the result of Proposition 5, we conducted numerical experiments to examine the

effectiveness of optimizing the launch-phase quantity decision. Our numerical experiments indicate

that not only do early supply shortages provide the firm with a profit advantage over policies with

unrestricted supply, in many cases they allow the firm to retrieve most of the profit lost due to

the firm’s inability to price dynamically in the launch-phase; an example is presented in Figure

5. Across all combinations of parameters listed in Table 1, we find that the profit gap between

dynamic pricing and fixed pricing without shortages is 23% on average with a minimum gap of 11%

(maximum 35%), while the gap between dynamic pricing and fixed pricing with supply shortages is

13% on average with a minimum of 3% (maximum 24%). Overall, we observe that policies involving

supply shortages generate substantial value for the firm when product quality is relatively close to

customers’ prior expectations (e.g., see Figure 5b).
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Figure 5 (a) Firm profit under different policies (b) Percentage of dynamic-pricing profit achieved under fixed-

pricing policies. Parameter values: N = 5000, x̄= 0.5, σx = 0.4, qp = 0, σp = 0.1, σq = 0.6, ρ= 0.2.

7. Extensions
7.1. Strategic Purchasing Delays

When the product’s price is fixed across time, consumers have no monetary incentive to strategically

delay their purchase in the first period. However, provided consumers are sufficiently patient,

strategic delays may occur for informational reasons; that is, some consumers with a positive

expected utility from purchase in the first period may choose to delay their purchasing decision

in anticipation of the information contained in the reviews of their peers (see Papanastasiou and

Savva (2015)). Here, we illustrate that such consumer behavior has no significant bearing on our

analysis.

Let us first make the concept of strategic waiting more concrete, by introducing a parameter δc

(0≤ δc ≤ 1), which represents consumers’ patience or “strategicness” – consumers are myopic when

δc = 0 and become more strategic as δc increases (Cachon and Swinney 2011). Parameter δc enters

consumers’ second-period utility as a multiplicative discount factor, and each consumer seeks to

maximize her expected utility through her purchasing decisions. The analysis of Papanastasiou and

Savva (2015) indicates that strategic consumers will follow a threshold policy in the first period,

whereby consumers purchase in the first period provided xi > θ(p)> p; that is, consumers whose

expected utility is relatively high (low) in the first period choose to purchase immediately (delay

purchase). Intuitively, the threshold θ(p) is strictly increasing in price p and in consumers’ patience

δc.

Next, consider how the result of Proposition 1 is affected by strategic purchasing delays. If the

price of the product satisfies p > τ ∗, in the absence of strategic delays the firm prefers to sell as

many units as possible in the first period. This remains the case in the presence of delays, the

difference being that the firm will now be able to sell only D1(θ(p)), as opposed to D1(p) units,

in the first period. On the other hand, if price satisfies p ≤ τ ∗ then in the absence of strategic
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delays it is optimal for the firm to sell only D1(τ ∗) units in the first period. When consumers are

strategic, two possible cases arise: either (i) D1(θ(p))>D1(τ ∗), in which case the firm continues

to under-supply the launch-phase demand (which is now equal to D1(θ(p)) as opposed to D1(p))

and makes only D1(τ ∗) units available in the first period, or (ii) D1(θ(p))≤D1(τ ∗), in which case

the firm sells as many units as possible in the first period, namely, D1(θ(p)). Case (i) applies to

relatively lower values of price, while case (ii) applies to values closer to (but still lower than)

τ ∗. The end result is simple: in the presence of strategic purchasing delays, there exists again a

threshold price below which the firm deliberately under-supplies early demand, say ψ∗, but this

threshold will be lower than τ ∗ as a result of strategic consumer behavior (i.e., for δc > 0, we have

ψ∗ < τ ∗). Furthermore, when p < ψ∗ the optimal first-period quantity remains D1(τ ∗), as was the

case without strategic delays – in terms of the formal statement of Proposition 1, the only thing

that changes is the threshold on the product’s price. Since Proposition 1 is the foundation for our

subsequent results, it follows that our main results and model insights are qualitatively unchanged

by the presence of strategic purchasing delays.

7.2. Quality-Dependent Correlation ρ

In our main analysis, we have focused on a positive correlation ρ> 0 between consumer preferences

and ex post quality perceptions (Dellarocas et al. 2004, Li and Hitt 2008). A plausible alternative

assumption would be to assume that the value of the correlation parameter depends on how the

consumers’ ex post experiences compare with their ex ante expectations. One way of implementing

this assumption is to make ρ a function of the comparison between the product’s true mean quality

q̂ and the consumers’ prior expectation qp. Consider the following simple case:

ρ=

{
+k if q̂≥ qp
−k if q̂ < qp,

for some positive constant k. That is, if q̂ ≥ qp then the product’s quality exceeds consumers’

expectations and reviews are positively biased, while if q̂ < qp then quality is below expectations

and reviews are negatively biased. Under this structure for ρ, our main analysis holds unchanged

for cases of q̂≥ qp (i.e., we can simply apply ρ= k in our existing results). When q̂ < qp, consumers’

opinions will be negatively biased. In this case, it is straightforward to show that the firm will

choose the single-period optimal price, fulfill all demand in the first period, and achieve zero sales

in the second period.

8. Conclusion

Motivated by empirical evidence from consumer learning in online settings, as well as anecdotal

observations regarding the impact of early short-term supply shortages on consumer reviews, this
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paper proposes and investigates a SL-based explanation for the optimality of early firm-induced

supply shortages. Whether this theory has more explanatory power over existing theories is ulti-

mately an empirical question, but we note that there are several settings where the existing theories

do not apply, namely, where prices are fixed and consumer peer-to-peer communication is promi-

nent. Interestingly, even though supply shortages may be viewed as an attempt by the firm to

manipulate the SL process, in many cases they result in “win-win” situations, whereby both the

firm and the consumer population are left better off in terms of profit and surplus, respectively.

Our findings have implications that are relevant for both marketing and operations management.

First, by optimizing the launch-phase quantity decision, we find that firms may be able to enjoy

most of the profit-benefits of pricing dynamically while charging a fixed price. In this respect,

inventory management can be viewed as a subtle and effective substitute for dynamic pricing, in

cases in which the latter is difficult to implement. Second, the increase in firm profit associated

with SL from buyer reviews explains why firms have invested in online systems that allow their

customers to post reviews and interact. Third, our model also indicates that firms may benefit

from aiming their pre-launch advertising campaigns at customers who are predisposed to having

a positive experience with their product. In terms of global product launches, firms which are

aware of a significant pool of loyal customers in specific markets may wish to consider launching

their product first in such favorable regions, in order to extract higher product ratings. Fourth,

the optimality of early supply shortages suggests that early non-deliberate stock outs may not

be as detrimental as previously considered (e.g., see Ho et al. (2002), Ho et al. (2011)), provided

the firm facilitates efficient rationing of demand through appropriate rationing mechanisms (e.g.,

waiting-lines, loyalty programs).

Appendix

A. Supplementary Materials

A.1. Efficient Rationing via Waiting Lines

In this section, we discuss how efficient rationing occurs when new products are allocated via waiting lines,

whereby consumers may “queue-up” in advance of product launch and receive a unit on a first-in-line first-

served basis (e.g., Apple product launches; The Los Angeles Times (2011)). (Note that consumers may

become aware of short supply through firm announcements (TechNewsWorld 2006), media speculation (The

Washington Post 2012), or prior experience with similar products.)

In this setting, customers who choose to join the waiting-line relatively earlier have a higher chance of

securing a unit, but must spend a larger amount of costly time in the waiting line. Thus, customers who

wish to purchase a unit in the first period are viewed as participants in an auction, in which bids for the

product are made in units of costly waiting-time spent in the waiting line. As demonstrated by Holt and
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Sherman (1982), the composition of the waiting-line that forms is an equilibrium outcome that depends on

the relationship between consumers’ valuations for the product and their waiting cost per unit time. Let wi

denote customer i’s waiting cost per unit time and let xi and wi be related through the mapping wi =w(xi),

where w : R 7→ R and w(·) is assumed to be differentiable across its domain. Adapting the analysis of Holt

and Sherman (1982) to our setting we may state the following result.

Proposition 6 (Holt and Sherman (1982)). If η = (xi−p)w′(xi)
w(xi)

< 1, then in equilibrium customers

with xi ≥ p join the first-period waiting line in descending order of their xi components.

Under the sufficient condition of Proposition 6, customers holding relatively higher ex ante valuations for

the product will choose to queue-up relatively earlier; in this case, the composition of the waiting-line results

in efficient rationing. We note that the sufficient condition of Proposition 6 subsumes both the commonly

assumed case of homogeneous waiting costs, as well as the case of higher valuation customers incurring

relatively lower waiting costs, which appears to be consistent with anecdotal evidence that those who join

the waiting line first are high-valuation, low-cost-of-waiting customers such as students (UTV 2012) or

speculators. (The presence of speculators in the market does not affect the applicability of our model, since

speculators may be viewed as an additional channel through which units are allocated to high-valuation

customers.)

A.2. Proportional Rationing

In this section, we illustrate that when demand rationing in the launch phase is proportional (i.e., each

customer who is willing to purchase in the first period has an equal chance of securing a unit), then early

scarcity strategies cannot be optimal for the firm. Proportional rationing occurs, for example, when the firm

allocates the available units via a lottery system (e.g., ZDNet (2012)). Under proportional rationing, the

following result suggests that the firm maximizes its profit by ensuring ample first-period product availability.

Proposition 7. For any price p and any ρ> 0, if first-period rationing is proportional then it is optimal

for the firm to sell as many units as possible in the launch phase, that is, n∗1 =D1(p).

In accordance with conventional knowledge, the more the firm sells in the first period, the higher its overall

profit. The sub-optimality of any decision n1 <D1(p) for the firm is explained as follows. Under proportional

rationing, the average preference component of first-period buyers (x̄1 in (5)) is fixed and independent of n1.

As a result, the average rating R̄ is also fixed and independent of n1 (R̄= q̂+ρσqσxh(p), where h(·) := f(·)
1−F (·) ).

In this case, the decision n1 modulates only the weight placed by consumers on R̄ when updating their beliefs

(see (4)).

Depending on q̂ and the value of ρ, the SL process may either increase or decrease the valuations of

consumers remaining in the market; however, in both cases it is optimal for the firm to sell as many units as

possible in the first period. If R̄(p)> qp = 0, then the firm sells as many units as possible in the first period,

because a larger number of “good” reviews will generate larger demand in the second period by increasing

consumers’ posterior belief over quality. By contrast, if R̄(p)< 0, then reviews are “bad” for the firm, because

they decrease consumers’ perception of quality. Nevertheless, it is still optimal for the firm to sell as many

units as possible in the first period, for if it does not, it loses sales in the second period through the effects

of SL.
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B. Proofs

Proof of Lemma 1

Let τ(n1) := F̄−1
(
n1

N

)
. Under efficient rationing, we have

R̄(n1) = q̂+ ρσq
x̄1− x̄
σx

= q̂+ ρσq
E[xi | xi > τ(n1)]− x̄

σx
= q̂+ ρσq

∫+∞
τ(n1)

xf1(x)dx

F̄ (τ(n1))
− x̄

σx
.

Note that the truncated Normal mean
∫+∞
τ

xf1(x)dx

F̄ (τ)
is strictly increasing in τ , and that τ(n1) is strictly

decreasing in n1. Therefore, R̄ is strictly decreasing in n1.

Proof of Proposition 1

Under efficient rationing, the firm’s problem may be stated as maxn1≤D1(p) n1p+max{(NF̄ (p− q̄u)−n1),0}p

where the two terms correspond to first- and second-period profit respectively (note D2 = max{(NF̄ (p− q̄u)−

n1),0}). Equivalently, the firm’s problem is maxn1≤D1(p) max{NF̄ (p− q̄u), n1}p. Because the firm always has

the option to choose n1 = 0 so that q̄u = qp = 0 and achieve NF̄ (p) sales in the second period, it suffices

to consider the problem maxn1≤D1(p)NF̄ (p− q̄u)p and, since F̄ (p− q̄u) is increasing in q̄u, the optimization

problem simplifies to maxn1≤D1(p) q̄u. We next consider the properties of the function q̄u(n1). We have

q̄u(n1) =
n1σ

2
p

n1σ2
p+σ2

q
R̄(n1), and

R̄(n1) = q̂+ ρσq
E[xi | xi > τ(n1)]− x̄

σx
,

where τ(n1) is a given by P (xi ≥ τ) = F̄ (τ) = n1

N
. Using this expression we have

q̄u(τ) =
NF̄ (τ)σ2

p

NF̄ (τ)σ2
p +σ2

q

q̂+ ρσq

∫+∞
τ

xf1(x)dx

F̄ (τ)
− x̄

σx


=

Nσ2
p

NF̄ (τ)σ2
p +σ2

q

[
F̄ (τ)q̂+ ρσq

∫ +∞
τ

xf1(x)dx− F̄ (τ)x̄

σx

]
.

Differentiating with respect to τ , we have (after some manipulation)

∂qu
∂τ

=
Nf(τ)σ2

p

[NF̄ (τ)σ2
p +σ2

q ]2

(
NF̄ (τ)σ2

pρ
σq
σx
µ(τ)−σ2

q

[
q̂+ ρ

σq
σx

(τ − x̄)

])
,

where µ(τ) =
∫∞
τ

(x−τ)f(x)dx

F̄ (τ)
. Note that in the last parenthesis, for any ρ > 0, ρNF̄ (τ)µ(τ) in the first term

is positive and strictly decreasing in τ (because µ(τ) is the “mean residual life” of the Normal distribution

which is a strictly decreasing quantity) while the second term increases linearly in τ . Therefore, we have

∂q̄u
∂τ

> 0 for τ < τ∗, and ∂q̄u
∂τ

< 0 for τ > τ∗, where τ∗ is the unique solution of

τ = x̄− σxq̂

σqρ
+
NF̄ (τ)σ2

pµ(τ)

σ2
q

. (10)

Therefore, q̄u(τ) is unimodal with a unique maximum at τ∗; equivalently, q̄u(n1) is unimodal with a unique

maximum at n∗1 =NF̄ (τ∗).

As a result, when NF̄ (τ∗) ∈ [0,D1(p)] the optimal launch-quantity is n∗1 = NF̄ (τ∗). However, when

NF̄ (τ∗)>D1(p), then by unimodality of q̄u the optimal inventory quantity decision is n∗1 =D1(p) (i.e., n1

as large as possible). Clearly, the latter holds when p > τ∗, while the former holds when p < τ∗.
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Proof of Proposition 2

From Proposition 1, we know that if the firm chooses a price which satisfies p < τ , it is optimal to choose

availability n1 =D1(τ)<D1(p). Let q̄∗u be the best possible SL outcome, i.e., q̄∗u = q̄u(D1(τ)). By contrast, if

the firm chooses p≥ τ , then it is optimal to choose availability n1 =D1(p).

Fix q̄∗u to the optimal SL outcome, and consider the following two profit functions: (1) π1(p) = pNF̄ (p−q∗u)

and (2) π2(p) = pNF̄ (p − qu(D1(p)). Thus, (1) assumes an optimal SL outcome irrespective of the price

chosen, while (2) assumes that the firm fulfills all demand irrespective of the price chosen. Next, note that

from Proposition 1 we have that (i) π1 describes optimal profit at prices p≤ τ∗ but is infeasible for p > τ∗,

and (ii) π2 describes optimal profit at prices p ≥ τ∗ but suboptimal profit for p < τ∗. Thus, the firm’s

optimal profit at any price p is described by π1 for p∈ [0, τ∗] and π2 for p∈ [τ∗,+∞). It then follows that a

necessary and sufficient condition for scarcity to be optimal (in which case the firm chooses p∈ [0, τ∗]) is that

dπ1

dp

∣∣∣
p=τ∗

< 0. To see why, note first that π1(p)≥ 0, π1(0) = 0 and π1 is strictly unimodal (this follows from

properties of the normal distribution), so that dπ1

dp

∣∣∣
p=τ∗

< 0 implies that maximum π1 (denote π∗1) is achieved

somewhere in [0, τ∗]; second, since π1 ≥ π2 ∀p (because π1 = pNF̄ (p− q∗u) ≥ pNF̄ (p− qu(D1(p)) = π2) we

have π∗1 >maxp∈[τ∗,+∞) π2. Finally, note that dπ1

dp

∣∣∣
p=τ∗

< 0 is equivalent to the condition stated in the main

result, τ∗h (τ∗− q̄∗u)> 1.

Proof of Corollary 1

From Proposition 1, we know that if the firm chooses a price which satisfies p < τ , it is optimal to choose

availability n1 =D1(τ)<D1(p). By contrast, if the firm chooses p≥ τ , then it is optimal to choose availability

n1 =D1(p). To prove the result, we will compare the best possible policy with price p < τ against the best

possible policy with price p≥ τ .

Consider first policies with p < τ . Any such policy is accompanied by availability n∗1 = D1(τ); let q̄∗u =

q̄u(n∗1). The firm’s pricing problem (within the class of policies with p < τ) is maxp<τ NpF̄ (p − q̄∗u). The

unique solution to this problem is ξ as stated in the main text. Next consider policies with p > τ . Here, any

policy is accompanied by availability n1 = D1(p). The firm’s pricing problem (within the class of policies

with p≥ τ) is maxp≥τ NpF̄ (p− q̄u(D1(p))).

Now, note that by unimodality of q̄u in the proof of Proposition 1, we have that maxp≥τ NpF̄ (p −

q̄u(D1(p))) < maxp≥τ NpF̄ (p− q̄∗u), because q̄u(n1) < q̄∗u for any n1 <D1(τ) and for p≥ τ we have that n1

can be at most D1(p), which is less than D1(τ). Therefore, a necessary and sufficient condition for policy

{ξ,n∗1} to be globally optimal is that ξ < τ , because ξ = arg maxpNpF̄ (p− q̄∗u). Conversely, if ξ ≥ τ , then we

have p∗ ∈ [τ,+∞) and p∗ is found through the one-dimensional problem maxpNpF̄ (p− q̄u(D1(p))).

We next show that ξ < τ holds true provided q̂ < Q, for some threshold Q which is a function of our model

parameters. First note that ∂q̄u
∂q̂

> 0, and therefore
∂q̄∗u
∂q̂

> 0. It follows that the normal hazard ratio h(p− q̄∗u)

is strictly decreasing in q̂, which in turn implies that ξ is strictly increasing in q̂. Next, taking the total

derivative of (10) with respect to q̂ we have

∂τ

∂q̂
+
σx
σqρ
− ∂

∂τ

(
NF̄ (τ)σ2

pµ(τ)

σ2
q

)
∂τ

∂q̂
= 0



28 Papanastasiou, Bakshi and Savva

Note that F̄ (τ)> 0, ∂F̄
∂τ
< 0 and µ(τ)> 0, ∂µ

∂τ
< 0 (µ(τ) is the “mean residual life” function and is decreasing

in τ for the normal distribution). Therefore, we have ∂τ
∂q̂
< 0. Since ∂ξ

∂q̂
> 0 and ∂τ

∂q̂
< 0, it follows that there

exists Q such that ξ < τ if q̂ < Q.

Proof of Proposition 3

We establish first the properties of the optimal quantity decision n∗1 =NF̄ (τ), by considering the properties

of the threshold τ , which is given by the implicit equation τ − x̄+ σxq̂

σqρ
− NF̄ (τ)σ2

pµ(τ)

σ2
q

= 0. Define M = σxq̂

σqρ
and

K(τ) =
NF̄ (τ)σ2

pµ(τ)

σ2
q

such that τ satisfies

τ − x̄+M −K(τ) = 0,

and note that K(τ)> 0 and K ′(τ)< 0 (see proof of Corollary 1). Taking the total derivative with respect to

q̂, we have
∂τ

∂q̂
+
∂M

∂q̂
− ∂K

∂τ

∂τ

∂q̂
= 0.

Since ∂M
∂q̂

> 0, we have ∂τ
∂q̂
< 0 and it follows that

∂n∗1
∂q̂

> 0. Next, consider the total derivative with respect to

ρ.
∂τ

∂ρ
+
∂M

∂ρ
− ∂K

∂τ

∂τ

∂ρ
= 0.

Here, ∂M
∂ρ

< 0 (> 0) for q̂ > 0 (< 0) and therefore
∂n∗1
∂ρ

< 0 (> 0) for q̂ > 0 (< 0). Next, consider the total

derivative with respect to σ2
p .

∂τ

∂σ2
p

−
(
∂K

∂σ2
p

+
∂K

∂τ

∂τ

∂σ2
p

)
= 0.

Therefore,
∂n∗1
∂σ2
p
< 0.

We now consider the properties of the optimal price p∗. Recall that this is implicitly defined via

ph(p− q̄∗u)− 1 = 0,

where q̄∗u = q̄u(n∗1) and it is straightforward that
∂q̄∗u
∂q̂

> 0,
∂q̄∗u
∂ρ

> 0 and
∂q̄∗u
∂σ2
p
> 0. Consider the total derivative

with respect to ρ. (
h(p− q̄∗u) + p

∂h(p− q̄∗u)

∂p

)
∂p

∂ρ
+

(
p
∂h(p− q̄∗u)

∂q̄∗u

)
∂q∗u
∂ρ

= 0.

Since h(·) is the hazard ratio of a Normal distribution, we have
∂h(p−q̄∗u)

∂p
> 0 and

∂h(p−q̄∗u)

∂q̄∗u
< 0. Therefore,

∂p

∂ρ
> 0. In a similar manner it can be shown that ∂p

∂q̂
> 0 and ∂p

∂σ2
p
> 0.

Finally, note that the firm’s profit can be expressed as π =Np∗F̄ (p∗ − q∗u). The properties of the firm’s

optimal profit follow readily from the properties of q∗u as stated above.

Proof of Proposition 4

We will show the desired result by contradiction. Assume an optimal policy ζ∗ = {p∗1, n∗1, p∗2} with n∗1 <D1(p∗1).

The profit under this policy is

π(p∗1, n
∗
1, p
∗
2) = p∗1n

∗
1 +π2(n∗1, p

∗
2),
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where p∗1n
∗
1 is the first period profit while π2(n∗1, p

∗
2) is the second period profit. Next, consider policy ψ,

ψ= {p̂1,D1(p̂1), p∗2} (i.e., dynamic pricing with unrestricted availability), where p̂1 is such that D1(p̂1) = n∗1.

Note that the latter implies p̂1 > p
∗
1. Profit under this policy is

π(p̂1,D1(p̂1), p∗2) = π(p̂1, n
∗
1, p
∗
2)

= p̂1n
∗
1 +π2(n∗1, p

∗
2)

> p∗1n
∗
1 +π2(n∗1, p

∗
2)

where the last inequality holds because first-period profit under policy ψ is strictly greater than under ζ∗,

owing to a price-premium attached to first-period sales. Therefore ζ∗ cannot be optimal.

Proof of Proposition 5 Let πd(p1, p2) denote profits under dynamic pricing at {p1, p2} and

let πs(p,n1) denote profits under fixed pricing at {p,n1}. We have π∗d = Np∗1
∫ +∞
p∗1

f(x)dx +

Np∗2
∫ p∗1

min{p∗1 ,p
∗
2−q̄u(D1(p∗1))} f(x)dx. Assume that the firm sets p= p∗2 and n1 =D1(p∗1) in a fixed-pricing policy.

Then it achieves profit πs =Np∗2
∫ +∞
p∗1

f(x)dx+Np∗2
∫ p∗1

min{p∗1 ,p
∗
2−q̄u(D1(p∗1))} f(x)dx. Therefore, πs(p

∗
2,D1(p∗1)) =

π∗d− (p∗1−p∗2)D1(p∗1). Since π∗s ≥ πs(p∗2,D1(p∗1)), it follows that ∆π∗ = π∗d−π∗s ≤ (p∗1−p∗2)D1(p∗1), which is the

upper bound of the Proposition.

Next, note that under the optimal fixed-pricing policy {p∗, n∗1} we have π∗s = p∗n∗1 +

Np∗2
∫ τ

min{τ,p∗−q̄u(n∗1)} f(x)dx. Under dynamic pricing, suppose that the firm sets p1 = τ such that D1(p1) = n∗1

and p2 = p∗. Then it achieves profit πd(τ, p
∗) = τn∗1 + Np∗2

∫ τ
min{τ,p∗−q̄u(n∗1)} f(x)dx. Therefore πd(τ, p

∗) =

π∗s + (τ − p∗)n∗1. Finally, since π∗d ≥ πd(τ, p∗), it follows that ∆π∗ = π∗d − π∗s ≥ (τ − p∗)n∗1 which is the lower

bound of the Proposition.

Proof of Proposition 7 Let q̄u denote the posterior mean belief, conditional on n1 reviews generated

in the first period with an average rating of R̄. Under proportional rationing, we have q̄u =
n1σ

2
p

n1σ2
p+σ2

q
R̄ =

n1σ
2
p

n1σ2
p+σ2

q
(q̂+σqσxh(p)), that is, R̄ is independent of n1. If q̂+σqσxh(p)> 0 then q̄u is positive and increasing

in n1, and the firm’s problem is maxn1≤D1(p) n1p+ (NF̄ (p− q̄u)− n1)p = maxn1≤D1(p)NF̄ (p− q̄u)p (note

that in this case D2 = NF̄ (p− q̄u)− n1 ≥ 0). The firm’s profit is therefore increasing in q̄u, which itself is

increasing in n1; the optimal launch quantity is n∗1 =D1(p). Next, if q̂+σqσxh(p)< 0 then q̄u is negative and

decreasing in n1. Therefore, the number of overall sales are bounded from above at NF̄ (p); these sales are

achieved by selling to all customers willing to purchase in the first period; this implies n∗1 =D1(p). Note that

a profit-equivalent policy is to sell no units in the first period, and sell D1(p) units in the second period; any

other n1 such that n1 ∈ (0,D1(p)) is suboptimal. �

C. Numerical Investigation of Profit Function Approximation

For the case of efficient rationing, we compare the solution and optimal profit obtained analytically for

problem (7) with the corresponding values obtained numerically for problem (6), for the 420 scenarios used

in Table 1: N ∈ {1000,3000,5000,7000}; qp = 0, σp = 0.1, q̂ ∈ {−0.15,−0.1,−0.05,0,0.05,0.1,0.15}; σx ∈

{0.4,0.6,0.8}, σq = 0.6, x̄= 0.5; ρ∈ {0.1,0.15,0.2,0.25,0.3}. We report summary statistics of this comparison

in the following table (the maximum errors were observed under scenarios of low product quality, i.e., for

q̂=−0.15).
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average error max error % of scenarios with < 1% error
Optimal profit π∗ 0.01% 0.63% 100%
Optimal price p∗ 0.16% 3.14% 97.4%

Optimal segmentation threshold τ ∗ 0.11% 4.8% 96.7%
(note n∗1 =D1(τ ∗))

D. Bayesian Social Learning

We describe here the procedure by which individual product reviews can be de-biased by rational agents when

information on reviewer preferences is readily available. Consider an individual buyer whose idiosyncratic

component is xi. According to (1), the buyer’s review is generated from a Normal source N(q̂ + ρ
σq

σx
(xi −

x̄), σ2
q (1−ρ2)). Since our objective is to learn q̂, we must first subtract the deterministic bias term ρ

σq

σx
(xi− x̄)

from the buyer’s review, thus “centering” the review around q̂. Next, employing the standard Gaussian

updating model (Chamley 2004), the Bayesian posterior mean (after observing a single review generated by

a customer with idiosyncratic preference component xi) is given by

qu =
σ2
p

σ2
p +σ2

q (1− ρ2)

(
qi− ρ

σq
σx

(xi− x̄)

)
, (11)

where qi is the buyer’s review. If a set S of reviews is available with |S|= ns, the same procedure can be

repeated, updating qu sequentially after de-biasing each review. The end result is

qu =
nsσ

2
p

nsσ2
p +σ2

q (1− ρ2)

(
1

ns

∑
i∈S

qi− ρ
σq
σx

(
1

ns

∑
i∈S

xi− x̄

))
(12)

=
nsσ

2
p

nsσ2
p +σ2

q (1− ρ2)

(
Rs− ρ

σq
σx

(x̄s− x̄)

)
, (13)

with Rs = 1
ns

∑
i∈S

qi and x̄s = 1
ns

∑
i∈S

xi.
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